首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dissection of inhibitory Smad proteins: both N- and C-terminal domains are necessary for full activities of Xenopus Smad6 and Smad7
Authors:Nakayama T  Berg L K  Christian J L
Institution:Department of Cell and Developmental Biology, L215, School of Medicine, Oregon Health Sciences University, Portland 97201-3098, USA.
Abstract:Smad6 and Smad7 comprise a subclass of vertebrate Smads that antagonize, rather than transduce, TGF-β family signaling. These Anti-Smads can block BMP signaling, as evidenced by their ability to induce a secondary dorsal axis when misexpressed ventrally in Xenopus embryos. Smad7 inhibits additional TGF-β related pathways, and causes spina bifida when misexpressed dorsally. We have performed structure-function analyses to identify domains of Anti-Smads that are responsible for their shared and unique activities. We find that the C-terminal domain of Smad7 displays strong axis inducing activity but cannot induce spina bifida. The isolated N-terminal domain of Smad7 is inactive but restores the ability of the C-terminus to cause spina bifida when the two are co-expressed. By contrast, the N- and C-terminal domains of Smad6 have weak axis inducing activity when expressed individually, but show full activity when co-expressed. Chimeric analysis demonstrates that the C-terminal domain of Smad7, but not Smad6, can induce spina bifida when fused to the N-terminal domain of either Smad6 or Smad7. Thus, although the C-terminal domain is the primary determinant of the intrinsic activity of Xenopus Anti-Smads, the N-terminal domain is essential for full activity, is interchangeable between Smad6 and 7, and can function in trans.
Keywords:Xenopus  Smad6  Smad7  Anti-Smad  Embryonic patterning  Secondary axis  Spina bifida  BMP  TGF-β  Neural induction
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号