首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The influence of cholesterol on the main phase transition of unilamellar dipalmytoylphosphatidylcholine vesicles. A differential scanning calorimetry and iodine laser T-jump study.
Authors:A Genz  J F Holzwarth  and T Y Tsong
Abstract:The influence of cholesterol (CHOL) on the main phase transition in single shell dipalmytoylphosphatidylcholine (DPPC) vesicles was investigated in equilibrium and kinetic experiments. CHOL increases the optical density and causes a slight hysteresis in turbidity transition curves. Static fluorescence anisotropy measurements showed interesting differences for three probes sensing different parts in the hydrophobic region of the phospholipid bilayer. Differential scanning calorimetry (DSC) peaks can be separated into a narrow and a broad component. The narrow component, which decreases linearly with increasing CHOL content and disappears at 20 mol %, is attributed to the transition of free phospholipid, while the broad component, being associated with the transition of CHOL-lipid units, increases monotoniously from 0 to 20%. Kinetic experiments were performed on our iodine-laser T-jump arrangement with turbidity detection. Three cooperative relaxation signals in the microsecond and millisecond time range were detected for pure DPPC vesicles as well as vesicles containing 7.5 and 16.5 mol % CHOL. All three relaxation processes were changed by CHOL: the superposition of the three relaxation amplitudes can be separated into a narrow and a broad component, as in DSC experiments. A speculative model is presented which assumes an inhomogeneous CHOL distribution fluctuating on a millisecond time scale in the temperature region of the main phase transition.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号