Carbon-13 nuclear magnetic resonance spectroscopy of high-spin iron(III) prophyrin compounds
Authors:
Harold Goff
Affiliation:
Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, U.S.A.
Abstract:
13C nuclear magnetic resonance spectra have been obtained for variety of high-spin iron(III) porphyrin compounds and corresponding μ-oxo-bridged dimeric species. Large hyperfine shifts and significant line broadening are observed. The monomeric exhibit hyperfine shifts which are downfield with te exception of an upfield shift for the meso-carbon atom. Possible unpaired spin delocalization mechanisms and prospects for observing 13C NMR porphyrin resonances in high-spin ferrihemoproteins are discussed. Spectra reported here provide strategy for incorporation of 13C labels in hemoproteins either by biosynthetic or chemical means. The vinyl-CH2 resonances of iron(III) protoporphyrin IX located 260 parts per million downfield from tetramethylsilane are especially attractive from the standpoint of chemical labeling.