Establishment of germline-competent embryonic stem cell lines from the MSM/Ms strain |
| |
Authors: | Kimi Araki Naoki Takeda Atsushi Yoshiki Yuichi Obata Naomi Nakagata Toshihiko Shiroishi Kazuo Moriwaki Ken-ichi Yamamura |
| |
Affiliation: | (1) Department of Developmental Genetics, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan;(2) Institute of Resource Development and Analysis, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan;(3) Riken Bioresource Center, 3-1-1 Koyadai, Tsukuba-shi Ibaraki, 304-0074, Japan;(4) National Institute of Genetics, Yata 1111, Mishima Shizuoka, 411-8540, Japan |
| |
Abstract: | MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|