Longitudinal Analysis of Maternal Plasma Apolipoproteins in Pregnancy: A Targeted Proteomics Approach |
| |
Authors: | Shannon K. Flood-Nichols Deborah Tinnemore Mark A. Wingerd Ali I. Abu-Alya Peter G. Napolitano Jonathan D. Stallings Danielle L. Ippolito |
| |
Affiliation: | From the ‡Madigan Healthcare System, Joint Base Lewis-McChord, 9040 Fitzsimmons Drive, Tacoma, Washington 98431 |
| |
Abstract: | Minimally invasive diagnostic tests are needed in obstetrics to identify women at risk for complications during delivery. The apolipoproteins fluctuate in complexity and abundance in maternal plasma during pregnancy and could be incorporated into a blood test to evaluate this risk. The objective of this study was to examine the relative plasma concentrations of apolipoproteins and their biochemically modified subtypes (i.e. proteolytically processed, sialylated, cysteinylated, dimerized) over gestational time using a targeted mass spectrometry approach. Relative abundance of modified and unmodified apolipoproteins A-I, A-II, C-I, C-II, and C-III was determined by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry in plasma prospectively collected from 11 gravidas with uncomplicated pregnancies at 4–5 gestational time points per patient. Apolipoproteins were readily identifiable by spectral pattern. Apo C-III2 and Apo C-III1 (doubly and singly sialylated Apo C-III subtypes) increased with gestational age (r2>0.8). Unmodified Apo A-II, Apo C-I, and Apo C-III0 showed no correlation (r2 = 0.01–0.1). Pro-Apo C-II did not increase significantly until third trimester (140 ± 13% of first trimester), but proteolytically cleaved, mature Apo C-II increased in late pregnancy (702 ± 130% of first trimester). Mature Apo C-II represented 6.7 ± 0.9% of total Apo C-II in early gestation and increased to 33 ± 4.5% in third trimester. A label-free, semiquantitative targeted proteomics approach was developed using LTQ-Orbitrap mass spectrometry to confirm the relative quantitative differences observed by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry in Apo C-III and Apo C-II isoforms between first and third trimesters. Targeted apolipoprotein screening was applied to a cohort of term and preterm patients. Modified Apo A-II isoforms were significantly elevated in plasma from mothers who delivered prematurely relative to term controls (p = 0.02). These results support a role for targeted proteomics profiling approaches in monitoring healthy pregnancies and assessing risk of adverse obstetric outcomes.The maternal physiology during pregnancy is characterized by inflammation and hyperlipidemia. Plasma protein composition fluctuates dynamically throughout gestation to reflect these physiological changes. Apolipoproteins, a diverse subset of triglyceride transport proteins, contribute to the hyperlipidemia of pregnancy by modulating lipid homeostasis in maternal plasma (1–3). Exaggerated hyperlipidemia and peripheral apolipoprotein burden are associated with inflammatory insult and signal obstetric complications (4–5). Numerous post-translationally modified apolipoprotein isoforms are reported in plasma, but it is unclear how these modifications affect apolipoprotein function and plasma distribution. For example, changes in the glycosylation status of apolipoprotein variants predate the onset of clinical symptoms in patients with preeclampsia, a hypertensive disorder of pregnancy with clinical features in common with cardiovascular disease (6–8). The identification and functional characterization of plasma apolipoprotein isoforms and their post-translationally modified subtypes may reveal important diagnostic and/or therapeutic targets for hypertensive disorders of pregnancy (6).Mass spectrometry and targeted proteomics analyses afford unprecedented sensitivity and specificity for detecting apolipoproteins and their numerous isoforms and subtypes (9–12). Mass spectrometry approaches overcome limitations inherent in biochemical approaches (e.g. ELISA [enzyme-linked immunosorbant assays] and Western blot analysis), especially the lack of specificity of antibodies for post-translationally modified variants of plasma proteins. The objective of this study was to longitudinally evaluate maternal plasma apolipoprotein profile over gestational time by SELDI-TOF-MS (surface-enhanced laser desorption/ionization-time of flight-mass spectrometry)1 analysis of intact proteins and a complementary targeted LTQ-Orbitrap XL MS approach. We evaluate changes in 13 post-translationally modified subtypes of the plasma apolipoproteins A-II, C-I, C-II, and C-III over gestational time. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|