首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Surrogate transformation of perennial ryegrass, Lolium perenne, using genetically modified Acremonium endophyte.
Authors:Fiona R Murray  Garrick C M Latch and D Barry Scott
Institution:(1) Molecular Genetics Unit, Department of Microbiology and Genetics, Massey University, Palmerston North, New Zealand;(2) DSIR Plant Protection, Massey University, Palmerston North, New Zealand
Abstract:Summary Conditions have been developed for transforming protoplasts of the perennial ryegrass endophyteAcremonium strain 187BB. Unlike most other ryegrass endophytes, this strain does not produce the lolitrem B neurotoxin and is therefore suitable as a host for surrogate introduction of foreign genes into grasses. Transformation frequencies of 700–800 transformants/mgrg DNA were obtained for both linear and circular forms of pAN7-1, a hygromycin (hph) resistant plasmid. Up to 80% of the linear transformants were stable on further culturing but only 25% of the circular transformants retained hygromycin resistance. Integration of pAN7-1 into the genome was confirmed by Southern blotting and probing of genomic digests of transformant DNA. Both single and tandemly repeated copies of the plasmid were found in the genome and both the number and sites of integration varied among the transformants. At least 13 chromosomes were identified in 187BB using contour-clamped homogeneous electric field (CHEF) gel electrophoresis. Probing of Southern blots of these gels confirmed that pAN7-1 had integrated into different chromosomes. The beta-glucuronidase (GUS) gene,uidA, was also introduced into 187BB by co-transformation of pNOM-2 with pAN7-1. GUS activity was detected by growing the transformants on plates containing 5-bromo-4-chloro-3-indolyl beta-D-glucuronic acid and by enzyme assays of mycelial extracts. Severalhph- anduidA-containing transformants were reintroduced into ryegrass seedlings and expression of GUS visualized in vivo, demonstrating that 187BB can be used as a surrogate host to introduce foreign genes into perennial ryegrass. Molecular analysis of fungal isolates from the leaf sheath confirmed that the pattern of pAN7-1 and pNOM-2 hybridizing fragments was identical to that observed in the fungus used as inoculum.
Keywords:Acremonium sp    Transformation  Chromosomal karyotype  Surrogate grass transformation  uidA andhph genes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号