首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Use of RSM and CHAID data mining algorithm for predicting mineral nutrition of hazelnut
Authors:Meleksen Akin  Ecevit Eyduran  Barbara M Reed
Institution:1.Department of Horticulture, Agricultural Faculty,Igdir University,Igdir,Turkey;2.Biometry Genetics Unit, Department of Animal Science, Agricultural Faculty,Igdir University,Igdir,Turkey;3.USDA-ARS-Retired, National Clonal Germplasm Repository,Corvallis,USA
Abstract:Defining optimal mineral-salt concentrations for in vitro plant development is challenging, due to the many chemical interactions in growth media and genotype variability among plants. Statistical approaches that are easier to interpret are needed to make optimization processes practical. Response Surface Methodology (RSM) and the Chi-Squared Automatic Interaction Detection (CHAID) data mining algorithm were used to analyze the growth of shoots in a hazelnut tissue-culture medium optimization experiment. Driver and Kuniyuki Walnut medium (DKW) salts (NH4NO3, Ca(NO3)2·4H2O, CaCl2·2H2O, MgSO4·7H2O, KH2PO4 and K2SO4) were varied from 0.5× to 3× DKW concentrations with 42 combinations in a IV-optimal design. Shoot quality, shoot length, multiplication and callus formation were evaluated and analyzed using the two methods. Both analyses indicated that NH4NO3 was a predominant nutrient factor. RSM projected that low NH4NO3 and high KH2PO4 concentrations were significant for quality, shoot length, multiplication and callus formation in some of the hazelnut genotypes. CHAID analysis indicated that NH4NO3 at ≤1.701× DKW and KH2PO4 at >2.012× DKW were the most critical factors for shoot quality. NH4NO3 at ≤0.5× DKW and Ca(NO3)2 at ≤1.725× DKW were essential for good multiplication. RSM results were genotype dependent while CHAID included genotype as a factor in the analysis, allowing development of a common medium rather than several genotype specific media. Overall, CHAID results were more specific and easier to interpret than RSM graphs. The optimal growth medium for Corylus avellana L. cultivars should include: 0.5× NH4NO3, 3× KH2PO4, 1.5× Ca(NO3)2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号