首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of Glu318 and Thr319 in the catalytic function of cytochrome P450d (P4501A2): effects of mutations on the methanol hydroxylation.
Authors:K Hiroya  M Ishigooka  T Shimizu  M Hatano
Institution:Institute for Chemical Reaction Science, Tohoku University, Sendai, Japan.
Abstract:Polar amino acids in the (putative) distal site are well conserved in P450s. For example, Glu318 for P450d is well conserved as either Glu or Asp for P450s, and Thr319 for P450d is also conserved for P450s. We have studied how mutations at Glu318 and Thr319 of P450d influence the catalytic activity toward methanol associated with the activation of O2. Catalytic activities of Glu318Asp, Glu318Ala, and Thr319Ala mutants toward methanol were 60, 25, and 38%, respectively, compared with that of the wild type. O2 consumption and NADPH oxidation rates of each mutants varied corresponding to the catalytic activities. However, surprisingly, efficiency (16-40%) of incorporated O to the substrate vs. consumed O2 for the Glu318Ala and Thr319Ala mutants were higher than that (9%) of the wild type. In addition, H2O2, which is produced from uncoupling for the wild-type P450d, was not observed for reaction of the Glu318Ala and Thr319Ala mutants. It seemed that consumed O2 was partially reduced to 2 mol of H2O by 4-electron transfer from NADPH for the wild-type and Thr319Ala mutant. However, for the two Glu318 mutants, it appeared that the consumed O2 was not reduced in the same way. It was thus suggested that the conserved Glu318 and Thr319 of P450d are not essential for the activation of O2 in the methanol oxidation. Role of the water molecule or the methanol molecule in the catalytic function was implied.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号