首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pharmacological and biophysical isolation of K+ currents encoded by ether-a-go-go-related genes in murine hepatic portal vein smooth muscle cells
Authors:Yeung  Shuk Yin M; Greenwood  Iain A
Abstract:Previous studies have shown that murine portal vein myocytes express ether-à-go-go related genes (ERGs) and exhibit distinctive currents when recorded under symmetrical K+ conditions. The aim of the present study was to characterize ERG channel currents evoked from a negative holding potential under conditions more pertinent to a physiological scenario to assess the possible functional impact of this conductance. Currents were recorded with ruptured or perforated patch variants of the whole cell technique from a holding potential of –60 mV. Application of three structurally distinct and selective ERG channel blockers, E-4031, dofetilide, and the peptide toxin BeKM-1, all inhibited a significant proportion of the outward current and abolished inward currents with distinctive "hooked" kinetics recorded on repolarization. Dofetilide-sensitive currents at negative potentials evoked by depolarization to +40 mV had a voltage-dependent time to peak and rate of decay characteristic of ERG channels. Application of the novel ERG channel activator PD-118057 (1–10 µM) markedly enhanced the hooked inward currents evoked by membrane depolarization and hyperpolarized the resting membrane potential recorded by current clamp and the perforated patch configuration by ~20 mV. In contrast, ERG channel blockade by dofetilide (1 µM) depolarized the resting membrane potential by ~8 mV. These data are the first record of ERG channel currents in smooth muscle cells under quasi-physiological conditions that suggest that ERG channels contribute to the resting membrane potential in these cells. vascular smooth muscle; voltage-dependent K+ current; membrane excitability
Keywords:
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号