首页 | 本学科首页   官方微博 | 高级检索  
     


Role of antibiotics and siderophores in biocontrol of take-all disease of wheat
Authors:Linda S. Thomashow  David M. Weller
Affiliation:(1) Root Disease and Biological Control Research Unit, USDA, Agricultural Research Service, 99164-6430 Pullman, WA, USA
Abstract:Both antibiotics and siderophores have been implicated in the control of soilborne plant pathogens by fluorescent pseudomonads. In Pseudomonas fluorescens 2–79, which suppresses take-all of wheat, the importance of the antibiotic phenazine-1-carboxylic acid was established with mutants deficient or complemented for antiobiotic production and by isolation of the antibiotic from the roots of wheat colonized by the bacteria. Genetic and biochemical studies of phenazine synthesis have focused on two loci; the first is involved in production of both anthranilic acid and phenazine-1-carboxylic acid, and the second encodes genes involved directly in phenazine synthesis. Because the antibiotic does not account fully for the suppressiveness of strain 2-79, additional mutants were analyzed to evaluate the role of the fluorescent siderophore and of an antifungal factor (Aff, identified as anthranilic acid) that accumulates when iron is limiting. Whereas strains producing only the siderophore conferred little protection against take-all, Aff+ strains were suppressive, but much less so than phenazine-producing strains. Iron-regulated nonsiderophore antibiotics may be produced by fluorescent pseudomonads more frequently than previously recognized, and could be partly responsible for beneficial effects that were attributed in the past to fluorescent siderophores.
Keywords:antibiotics  biocontrol  Gaeumannomyces graminis  phenazine-1-carboxylic acid  Pseudomonas  siderophores  take-all  wheat
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号