首页 | 本学科首页   官方微博 | 高级检索  
   检索      

人骨髓间充质干细胞向神经细胞分化过程中Notch通路信号分子表达的变化
作者姓名:Xing Y  Bai RY  Yan WH  Han XF  Duan P  Xu Y  Fan ZG
作者单位:1. 郑州大学基础医学院,干细胞研究中心,郑州,450052;郑州大学基础医学院,生理学教研室,郑州,450052
2. 郑州大学基础医学院,干细胞研究中心,郑州,450052;郑州大学基础医学院,病理生理学教研室,郑州,450052
3. 郑州大学基础医学院,干细胞研究中心,郑州,450052
基金项目:河南省科技基金;河南省自然科学基金
摘    要:本研究探讨Noah信号通路在人骨髓间充质干细胞(human mesenchymal stem cells,hMSCs)体外增殖及向神经细胞分化过程中的作用。采集健康自愿者骨髓,体外培养获得hMSCs,取第3代hMSCs,在诱导剂(β-ME,DMSO,BHA)作用下向神经细胞分化。诱导后用免疫细胞化学鉴定神经元特异性烯醇化酶(neuron-specific enolase,NSE)和尼氏体的表达以确定诱导效果:用流式细胞术检测细胞生长周期时相的变化。在诱导前后,用免疫荧光和RT-PCR方法检测Notch通路中Notch1受体蛋白、配体Jagged1(JAG1)、调节蛋白活化相关物早老素1(presenilin 1,PS1)、靶基因hairy and enhancer of split1(HES1)信号分子表达的变化。结果显示:诱导前,处于G0/G1期的hMSCs占58.5%,S+G2/M期的细胞占41.5%;诱导后,G0/G1期细胞比例升高,而S+G2/M期细胞比例下降,NSE阳性细胞率达(77±0.35)%,细胞质中可见深蓝色的块状或颗粒状尼氏体。免疫荧光显示,诱导前后hMSCs内Notch1和JAG1均呈阳性表达,但RT-PCR检测发现诱导后Notch1、JAG1、PSl和HES1 mRNA表达量较诱导前明显降低(均P〈0.05)。结果表明,诱导hMSCs向神经细胞分化能抑制Notch信号分子表达,低水平的Notch信号激活可能有利于神经细胞的分化。

关 键 词:骨髓间充质干细胞  早老素1  分化  神经细胞
修稿时间:2006-11-172007-01-12

Expression changes of Notch-related genes during the differentiation of human mesenchymal stem cells into neurons
Xing Y,Bai RY,Yan WH,Han XF,Duan P,Xu Y,Fan ZG.Expression changes of Notch-related genes during the differentiation of human mesenchymal stem cells into neurons[J].Acta Physiologica Sinica,2007,59(3):267-272.
Authors:Xing Ying  Bai Rui-Ying  Yan Wen-Hai  Han Xue-Fei  Duan Ping  Xu Yan  Fan Zhi-Gang
Institution:1The Stem Cells Research Center; 2Department of Physiology; 3Department of Pathophysiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
Abstract:The Notch signaling pathway has been implicated in the regulation of cell-fate decisions such as differentiation of embryo stem cells and neural stem cells into neurons. We cultured human mesenchymal stem cells (hMSCs) in vitro and induced hMSCs to differentiate into neural cells by beta-mercaptoethanol (beta-ME), DMSO and 3-tert-butyl-4-hydroxyanisole (BHA). Immunocytochemistry was utilized to detect neuron-specific enolase (NSE) and Nissl body, and flow cytometry was used to determine cell growth phases. The expressions of signal molecules involved in the Notch pathway such as Notch1, Jagged 1 (JAG1), presenilin 1 (PS1) and hairy and enhancer of split 1(HES1) were observed by RT-PCR and immunofluorescent techniques. The results were as follows: (1) Before induction, the percentage of hMSCs at G(0)/G(1) was 58.5%, and the percentage at S+G(2)/M was 41.5%. After induction, the percentage of hMSCs at G(0)/G(1) increased to 73.1%, 76.2% and 78.1%, respectively on days 2, 4 and 6, and the percentage at S+G(2)/M decreased to 26.8%, 24.8% and 21.9%, respectively; The percentage of NSE-positive cells reached (77+/-0.35) %; Nisslos staining was positive in cytoplasm. (2) Notch1 and JAG1 were both expressed in hMSCs before and after induction, but the mRNA expressions of both Notch1 and JAG1, detected by RT-PCR, decreased obviously after induction(P<0.05). Notch1 mRNA/beta-actin was 1.157, 0.815, 0.756 and 0.570, and JAG1 mRNA/beta-actin was 0.437, 0.350, 0.314 and 0.362, respectively, on days 0, 2, 4 and 6 after induction. The Notch pathway activation participant PS1 mRNA and Notch pathway target gene HES1 mRNA also decreased apparently after induction (P<0.05), and their mRNA/beta-actin was 0.990, 0.449, 0.441, 0.454 and 0.370, 0.256, 0.266, 0.240 on days 0, 2, 4 and 6, respectively. These observations indicate that the expressions of Notch signal molecules were suppressed when hMSCs were induced to differentiate into neural cells. Based on these findings, we propose that low level of Notch signaling activation may contribute to neural cell differentiation.
Keywords:Notch1  JAG1  HES1
本文献已被 维普 万方数据 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号