首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ionic mechanisms underlying tonic and phasic firing behaviors in retinal ganglion cells
Abstract:In the retina, the firing behaviors that ganglion cells exhibit when exposed to light stimuli are very important due to the significant roles they play in encoding the visual information. However, the detailed mechanisms, especially the intrinsic properties that generate and modulate these firing behaviors is not completely clear yet. In this study, 2 typical firing behaviors—i.e., tonic and phasic activities, which are widely observed in retinal ganglion cells (RGCs)—are investigated. A modified computational model was developed to explore the possible ionic mechanisms that underlie the generation of these 2 firing patterns. Computational results indicate that the generation of tonic and phasic activities may be attributed to the collective actions of 2 kinds of adaptation currents, i.e., an inactivating sodium current and a delayed-rectifier potassium current. The concentration of magnesium ions has crucial but differential effects in the modulation of tonic and phasic firings, when the model neuron is driven by N-methyl-D-aspartate (NMDA) -type synaptic input instead of constant current injections. The proposed model has robust features that account for the ionic mechanisms underlying the tonic and phasic firing behaviors, and it may also be used as a good candidate for modeling some other firing patterns in RGCs.
Keywords:computational model  tonic activity  phasic activity  retinal ganglion cell  adaptation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号