Abstract: | Embryos of the annual killifish Austrofundulus limnaeus can enter into a state of metabolic dormancy, termed diapause, as a normal part of their development. In addition, these embryos can also survive for prolonged sojourns in the complete absence of oxygen. Dormant embryos support their metabolism using anaerobic metabolic pathways, regardless of oxygen availability. Dormancy in diapause is associated with high ATP and a positive cellular energy status, while anoxia causes a severe reduction in ATP content and large reductions in adenylate energy charge and ATP/ADP ratios. Most cells are arrested in the G1/G0 phase of the cell cycle during diapause and in response to oxygen deprivation. In this paper, we review what is known about the physiological and biochemical mechanisms that support metabolic dormancy in this species. We also highlight the great potential that this model holds for identifying novel therapies for human diseases such as heart attack, stroke and cancer. |