首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dysregulation of intracellular copper trafficking pathway in a mouse model of mutant copper/zinc superoxide dismutase-linked familial amyotrophic lateral sclerosis
Authors:Eiichi Tokuda  Eriko Okawa  Shin-ichi Ono†
Institution:Research Unit of Clinical Pharmacy, College of Pharmacy, Nihon University, Tokyo, Japan;
Division of Neurology, Akiru Municipal Medical Center, Tokyo, Japan
Abstract:Mutations in copper/zinc superoxide dismutase (SOD1) are responsible for 20% of familial amyotrophic lateral sclerosis through a gain-of-toxic function. We have recently shown that ammonium tetrathiomolybdate, an intracellular copper-chelating reagent, has an excellent therapeutic benefit in a mouse model for amyotrophic lateral sclerosis. This finding suggests that mutant SOD1 might disrupt intracellular copper homeostasis. In this study, we investigated the effects of mutant SOD1 on the components of the copper trafficking pathway, which regulate intracellular copper homeostasis. We found that mutant, but not wild-type, SOD1 shifts intracellular copper homeostasis toward copper accumulation in the spinal cord during disease progression: copper influx increases, copper chaperones are up-regulated, and copper efflux decreases. This dysregulation was observed within spinal motor neurons and was proportionally associated with an age-dependent increase in spinal copper ion levels. We also found that a subset of the copper trafficking pathway constituents co-aggregated with mutant SOD1. These results indicate that the nature of mutant SOD1 toxicity might involve the dysregulation of the copper trafficking pathway, resulting in the disruption of intracellular copper homeostasis.
Keywords:amyotrophic lateral sclerosis  copper trafficking pathway  copper/zinc superoxide dismutase  glial cell  intracellular copper homeostasis  motor neuron
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号