首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Yng2p-dependent NuA4 histone H4 acetylation activity is required for mitotic and meiotic progression.
Authors:J S Choy  B T Tobe  J H Huh  S J Kron
Institution:Center for Molecular Oncology, Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
Abstract:In all eukaryotes, multisubunit histone acetyltransferase (HAT) complexes acetylate the highly conserved lysine residues in the amino-terminal tails of core histones to regulate chromatin structure and gene expression. One such complex in yeast, NuA4, specifically acetylates nucleosome-associated histone H4. Recent studies have revealed that NuA4 comprises at least 11 subunits, including Yng2p, a yeast homolog of the candidate human tumor suppressor gene, ING1. Consistent with prior data, we find that cells lacking Yng2p are deficient for NuA4 activity and are temperature-sensitive. Furthermore, we show that the NuA4 complex is present in the absence of Yng2p, suggesting that Yng2p functions to maintain or activate NuA4 HAT activity. Sporulation of diploid yng2 mutant cells reveals a defect in meiotic progression, whereas synchronized yng2 mutant cells display a mitotic delay. Surprisingly, genome-wide expression analysis revealed little change from wild type. Nocodazole arrest and release relieves the mitotic defects, suggesting that Yng2p may have a critical function prior to or during metaphase. Rather than a uniform decrease in acetylated forms of histone H4, we find striking cell-to-cell heterogeneity in the loss of acetylated histone H4 in yng2 mutant cells. Treating yng2 mutants with the histone deacetylase inhibitor trichostatin A suppressed the mitotic delay and restored global histone H4 acetylation, arguing that reduced H4 acetylation may underlie the cell cycle delay.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号