首页 | 本学科首页   官方微博 | 高级检索  
     


In vitro and in vivo inhibition of plant polyamine oxidase activity by polyamine analogues
Authors:Maiale Santiago J  Marina María  Sánchez Diego H  Pieckenstain Fernando L  Ruiz Oscar A
Affiliation:IIB-INTECH, Camino de Circunvalación de la Laguna km 6, Casilla de Correo 164, Provincia de Buenos Aires, B7130IWA Chascomús, Argentina
Abstract:
Polyamine oxidase from Avena sativa L. cv. Cristal seedlings was purified to homogeneity using a simple four-step purification protocol including an infiltration washing technique. The enzyme had a high affinity for spermidine and spermine (Km ∼ 5.5 and 1.2 μM, respectively), and also oxidized norspermidine (Km ∼ 64.0 μM). Natural and synthetic diamines, cyclohexylamine, the putrescine analogue 1-aminooxy-3-aminopropane, and several polyamine analogues had inhibitory effects on polyamine oxidase activity and none were substrates. No inhibitory effect was observed on spermidine oxidation when the reaction product 1,3-diaminopropane was added. By contrast, 1-aminooxy-3-aminopropane showed mixed inhibition kinetics and a Ki value of 0.113 mM. In addition, in vitro enzymatic activity assays showed that the oligoamine [3,8,13,18,23,28,33,38,43,48-deca-aza-(trans-25)-pentacontene], the tetramine 1,14-bis-[ethylamino]-5,10-diazatetradecane, and the pentamine 1,19-bis-[ethylamino]-5,10,15-triazanonadecane, displayed potent competitive inhibitory activities against polyamine oxidase with Ki values of 5.8, 110.0 and 7.6 nM, respectively, where cyclohexylamine was a weak competitive inhibitor with a Ki value of 0.5 mM. These analogues did not inhibit mycelial growth of the fungus Sclerotinia sclerotiorum (Lib.) De Bary and the bacterium Pseudomonas viridiflava (Burkholder) Dowson in vitro. On the contrary, with concentrations similar to those used for polyamine analogues, guazatine (a well-known fungicide and at the same time, a polyamine oxidase inhibitor) inhibited (∼85%) S. sclerotiorum mycelial growth on Czapek-Dox medium.Finally, the analogue 1,19-bis-ethylamino-5,10,15-triazanonadecane inhibited polyamine oxidase activity observed in segments of maize leaves in vivo. The results obtained provide insights into research on the influence of polyamine oxidase activity on plant biotic and abiotic stresses.
Keywords:Zea mays   Avena sativa   Gramineae   Maize   Oat   Oxidation   Polyamine oxidase inhibition   1-Aminooxy-3-aminopropane   Polyamine analogues
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号