首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Zinc response in pigeon pea as influenced by genotypic variability
Authors:U C Shukla  Hans Raj
Institution:(1) Present address: University of Maiduguri, Nigeria
Abstract:Seven improved cultivars of pigeon pea (Cajanus cajan (L.) Mill sp.) were evaluated at 0 (original Zn deficient soil), 5 and 50 ppm Zn levels under greenhouse conditions. Plants were harvested at 6 weeks after sowing and at maturity. Responses to 5 ppm Zn in shoot at 6 weeks of growth, and in leaf, stem, pod-hull and grain at maturity ranged from 63 to 387, 37 to 116, 15 to 73,9 to 145 and 51 to 200%, respectively. Application of 50 ppm Zn in most of the cultivars did not markedly affect the yield of different plant parts. Zinc concentration at 0 Zn level in shoot at 6 weeks of growth and in leaf, stem, pod-hull and grain of different genotypes varied from 9.8 to 14.5, 13.7 to 21.2, 10.8 to 16.7, 4.17 to 5.83 and 9.2 to 16.7 ppm, respectively, and the increase in concentration with 5 ppm applied Zn ranged from 28 to 248, 28 to 89, 27 to 85, 20 to 142, and 105 to 254 per cent, respectively. The concentration further increased with an increase in Zn level to 50 ppm. There was less variation in the yield and tissue Zn concentration of different genotypes after Zn application. Phosphorus concentration at 0 Zn level in shoot at 6 weeks of growth, and in leaf, stem, pod-hull and grain of different genotypes varied from 0.50 to 0.71, 0.18 to 0.31, 0.11 to 0.24, 0.15 to 0.20 and 0.43 to 0.58% respectively. Zinc decreased P in all plant parts but relative decrease was more in vegetative parts than in grain. The variability in Zn response among pigeon pea genotypes could partly be attributed to the maintenance of proper P/Zn balance in metabolically active plant parts, such as, leaf, and partly to their capacity to exploit soil Zn and to translocate it to the above-ground parts.Contribution from the Department of Soils, Haryana Agricultural University, Hissar (India).
Keywords:Differential susceptibility  Legume  Pigeon pea  P-distribution  Nutrient balance  Zndistribution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号