首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cellulose Derivatives Enhanced Stability of Alginate-Based Beads Loaded with <Emphasis Type="Italic">Lactobacillus plantarum</Emphasis> LAB12 against Low pH,High Temperature and Prolonged Storage
Authors:Ismail M Fareez  Siong Meng Lim  Nurul Aida Ashyqin Zulkefli  Rakesh K Mishra  Kalavathy Ramasamy
Institution:1.Faculty of Pharmacy,Universiti Teknologi MARA (UiTM),Bandar Puncak Alam,Malaysia;2.Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research,Universiti Teknologi MARA (UiTM),Shah Alam,Malaysia
Abstract:The susceptibility of probiotics to low pH and high temperature has limited their use as nutraceuticals. In this study, enhanced protection of probiotics via microencapsulation was achieved. Lactobacillus plantarum LAB12 were immobilised within polymeric matrix comprised of alginate (Alg) with supplementation of cellulose derivatives (methylcellulose (MC), sodium carboxymethyl cellulose (NaCMC) or hydroxypropyl methylcellulose (HPMC)). L. plantarum LAB12 encapsulated in Alg-HPMC(1.0) and Alg-MC(1.0) elicited improved survivability (91%) in simulated gastric conditions and facilitated maximal release (~100%) in simulated intestinal condition. Alg-HPMC(1.0) and Alg-MC(1.0) significantly reduced (P < 0.05) the viability loss of LAB12 (viability loss <7%) when compared to Alg alone (viability loss <13%) under extreme temperatures (75 and 90 °C). Four-week storage of encapsulated LAB12 at 4 °C yielded viable counts >7 log CFU g?1. Alg-MC and Alg-HPMC improved the survival of LAB12 against simulated gastric condition (9.24 and 9.55 log CFU g?1, respectively), temperature up to 90 °C (9.54 and 9.86 log CFU g?1, respectively) and 4-week of storage at 4 °C (8.61 and 9.23 log CFU g?1, respectively) with sustained release of probiotic in intestinal condition (>9 log CFU g?1). These findings strongly suggest the potential of cellulose derivatives supplemented Alg bead as protective micro-transport for probiotic strains. They can be safely incorporated into new functional food or nutraceutical products.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号