首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid
Authors:Patel Milind A  Ou Mark S  Harbrucker Roberta  Aldrich Henry C  Buszko Marian L  Ingram Lonnie O  Shanmugam K T
Institution:Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, FL 32611, USA.
Abstract:Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50 degrees C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, (13)C]lactate accounted for more than 90% of the total (13)C-labeled products from (13)C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号