首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression of an Arabidopsis vacuolar H+‐pyrophosphatase gene (AVP1) in cotton improves drought‐ and salt tolerance and increases fibre yield in the field conditions
Authors:Sundaram Kuppu  Julio Paez‐Valencia  Marisol Mendoza  Pei Hou  Jian Chen  Xiaoyun Qiu  Longfu Zhu  Xianlong Zhang  Dick Auld  Eduardo Blumwald  Hong Zhang  Roberto Gaxiola  Paxton Payton
Institution:1. Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA;2. School of Life Sciences, Arizona State University, Tempe, AZ, USA;3. College of Life Sciences, Sichuan University, Chengdu, Sichuan Province, China;4. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, China;5. Department of Plant and Soil Sciences, Texas Tech University, Lubbock, TX, USA;6. Department of Plant Sciences, University of California, Davis, CA, USA;7. USDA Cropping Systems Research Laboratory, Lubbock, TX, USA
Abstract:The Arabidopsis gene AVP1 encodes a vacuolar pyrophosphatase that functions as a proton pump on the vacuolar membrane. Overexpression of AVP1 in Arabidopsis, tomato and rice enhances plant performance under salt and drought stress conditions, because up‐regulation of the type I H+‐PPase from Arabidopsis may result in a higher proton electrochemical gradient, which facilitates enhanced sequestering of ions and sugars into the vacuole, reducing water potential and resulting in increased drought‐ and salt tolerance when compared to wild‐type plants. Furthermore, overexpression of AVP1 stimulates auxin transport in the root system and leads to larger root systems, which helps transgenic plants absorb water more efficiently under drought conditions. Using the same approach, AVP1‐expressing cotton plants were created and tested for their performance under high‐salt and reduced irrigation conditions. The AVP1‐expressing cotton plants showed more vigorous growth than wild‐type plants in the presence of 200 mm NaCl under hydroponic growth conditions. The soil‐grown AVP1‐expressing cotton plants also displayed significantly improved tolerance to both drought and salt stresses in greenhouse conditions. Furthermore, the fibre yield of AVP1‐expressing cotton plants is at least 20% higher than that of wild‐type plants under dry‐land conditions in the field. This research indicates that AVP1 has the potential to be used for improving crop’s drought‐ and salt tolerance in areas where water and salinity are limiting factors for agricultural productivity.
Keywords:drought tolerance  proton pump  root development  salt stress  transgenic cotton
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号