首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phosphorylation and proteasome-dependent degradation of Bcl-2 in mitotic-arrested cells after microtubule damage.
Authors:P Chadebech  L Brichese  V Baldin  S Vidal  A Valette
Institution:LBCMCP, EP CNRS 2079, Université Paul Sabatier, 118 Route de Narbonne, Toulouse Cedex, 31062, France.
Abstract:Treatment of NIH-OVCAR-3 cells with paclitaxel, a microtubule-stabilizing agent, induces mitotic arrest and apoptosis, but also Bcl-2 phosphorylation. We report here that Bcl-2 phosphorylation precedes Bcl-2 down-regulation and that both events are closely associated with mitotic arrest, but are not sufficient for paclitaxel to trigger apoptosis. Indeed, when paclitaxel-treated cells were induced to exit mitosis in the presence of 2-aminopurine, Bcl-2 phosphorylation and Bcl-2 down-regulation were both inhibited. In contrast, when apoptosis was inhibited by a caspase inhibitor or Bcl-2 over-expression, Bcl-2 phosphorylation and down-regulation still occurred. Furthermore, we show that Bcl-2 is degraded in mitosis by the proteasome-dependent pathway since Bcl-2 down-regulation is inhibited by proteasome inhibitors such as MG132, Lactacystin and LLnL. Taken together these results indicate that mitotic spindle damage results in post-translational modifications of Bcl-2 by phosphorylation and degradation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号