首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of an electrogenic ATP and chloride-dependent proton translocating pump from rat renal medulla
Authors:J D Kaunitz  R D Gunther  G Sachs
Abstract:
To study acidification mechanisms in the distal nephron, microsomes were prepared from rat renal medulla by differential centrifugation. Microsomes were enriched in the enzyme marker gamma-glutamyl transferase and contained an ATP-dependent proton pump, as evidenced by ATP-dependent, 3,3',4',5-tetrachlorosalicylanilide-reversible quenching of acridine orange fluorescence. Acidification was vanadate-insensitive, but was completely inhibited by micromolar N-ethylmaleimide. Maximal acidification was achieved in the presence of halide (Cl-, Br-) only and was not attainable with potassium-valinomycin diffusion potentials without halide ion. Microsomal ATPase activity was neither chloride- nor N-ethylmaleimide-sensitive. A chloride conductance was observed only with vesicles which had undergone ATP-dependent acidification. An ATP-dependent, N-ethylmaleimide-inhibitable, 3,3',4',5-tetrachlorosalicylanilide-reversible, and chloride-attenuated quench of bis(1,3-dibutylbarbituric acid-(5] pentamethinoxonol fluorescence was seen, consistent with net transfer of positive charge into the vesicles. Nonetheless, positive intravesicular potentials increased the ATP-dependent initial acidification rate, perhaps by increasing availability of chloride ion to the transport site. Our results are consistent with an electrogenic, ATP-dependent proton pump regulated by a voltage-sensitive chloride site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号