Predominant Clonal Accumulation of CD8+ T Cells with Moderate Avidity in the Central Nervous Systems of Theiler's Virus-Infected C57BL/6 Mice |
| |
Authors: | Hyun Seok Kang Byung S. Kim |
| |
Affiliation: | Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611 |
| |
Abstract: | Induction of antigen-specific CD8+ T cells bearing a high-avidity T-cell receptor (TCR) is thought to be an important factor in antiviral and antitumor immune responses. However, the relationship between TCR diversity and functional avidity of epitope-specific CD8+ T cells accumulating in the central nervous system (CNS) during viral infection is unknown. Hence, analysis of T-cell diversity at the clonal level is important to understand the fate and function of virus-specific CD8+ T cells. In this study, we examined the Vβ diversity and avidity of CD8+ T cells specific to the predominant epitope (VP2121-130) of Theiler''s murine encephalomyelitis virus. We found that Vβ6+ CD8+ T cells, associated with epitope specificity, predominantly expanded in the CNS during viral infection. Further investigations of antigen-specific Vβ6+ CD8+ T cells by CDR3 spectratyping and sequencing indicated that distinct T-cell clonotypes are preferentially increased in the CNS compared to the periphery. Among the epitope-specific Vβ6+ CD8+ T cells, MGX-Jβ1.1 motif-bearing cells, which could be found at a high precursor frequency in naïve mice, were expanded in the CNS and tightly associated with gamma interferon production. These T cells displayed moderate avidity for the cognate epitope rather than the high avidity normally observed in memory/effector T cells. Therefore, our findings provide new insights into the CD8+ T-cell repertoire during immune responses to viral infection in the CNS.Theiler''s murine encephalomyelitis virus (TMEV) is a member of the Cardiovirus genus within the Picornaviridae family (43). This virus is a common enteric pathogen among wild mice but rarely causes neurological disease (57). However, when it infects susceptible mice (e.g., the SJL/J [SJL] strain) intracerebrally, it reproducibly induces a chronic immune-mediated demyelinating disease that has been studied as an infectious model of human multiple sclerosis (MS) (10, 30). In contrast, infection of resistant mice like those of the C57BL/6 (B6) strain results in strong antiviral immune responses that clear the virus effectively and prevent disease development (24, 31). Therefore, immune responses in B6 mice have been often compared to those in susceptible SJL mice to understand the nature of protective versus pathogenic immunity in these mice.It has been shown that the major histocompatibility complex (MHC) H-2D locus is a critical genetic factor for resistance to TMEV-induced demyelinating disease (9, 49). For example, expression of the H-2Db transgene makes susceptible FVB mice resistant by inducing strong H-2Db-restricted VP2121-130-specific CD8+ T-cell responses (36). This acquired resistance is abolished when VP2121-130-specific T cells are tolerized by introducing the VP2 transgene (45). These results strongly suggest that CD8+ T cells generated in the presence of H-2Db are critical for viral clearance from the central nervous system (CNS). Since the cardinal difference between the resistant B6 and susceptible SJL strains is the quantity, not the quality, of virus-specific CD8+ T cells (23, 32), strong CD8+ T-cell responses are probably required to prevent viral persistence and the consequent development of demyelinating disease. More than threefold more virus-specific CD8+ T cells were found in the CNSs of resistant B6 mice than in those of susceptible SJL mice at the acute phase of infection. Thus, the level of virus-specific CD8+ T cells at an early phase of the immune response may be a critical factor in resistance to the disease.Many recent investigations indicate that oligoclonal CD8+ T cells accumulate in the CNSs of MS patients (4, 38, 51). In addition, CD8+ T cells may also induce the development of experimental autoimmune encephalomyelitis (EAE) (54). Therefore, clonal expansion of certain CD8+ T cells may be associated with the pathogenesis of demyelinating diseases. However, B6 mice, which are resistant to TMEV-induced demyelinating disease, induce strong CD8+ T-cell responses to a single predominant epitope (VP2121-130), i.e., ≥70% of CNS-infiltrating CD8+ T cells (41, 42). These CD8+ T cells result in effective viral clearance yet remain at a low level in the CNS more than 120 days postinfection (dpi) without detectable pathology (42). This inconsistency led us to investigate the shape and quality of the T-cell receptor (TCR) repertoire accumulating in the CNSs of B6 mice.The CD8+ T-cell responses induced after viral infection have previously been investigated with other animal viruses, including influenza virus, lymphocytic choriomeningitis virus (LCMV), mouse hepatitis virus (MHV), and Borna disease virus (11, 14, 35, 47, 58). Among these models, the detailed T-cell Vβ repertoire in the CNS was described only in the MHV model (46). CD8+ T-cell responses against TMEV in B6 mice are primarily against a single predominant epitope (22, 36, 41). However, virtually no study of the TCR Vβ repertoires of virus-specific CD8+ T cells has been reported. Furthermore, it is not yet known whether a particular TCR Vβ repertoire is associated with the avidity and/or function of CD8+ T cells in the CNS. Since protective versus pathogenic CD8+ T cells may correlate with their Vβ repertoire and T-cell function, these studies may help to elucidate the underlying mechanisms of protection versus pathogenesis of CD8+ T cells in the CNS.In this study, we have addressed several important questions about the CD8+ T-cell repertoire in the CNS. First, what is the pattern of Vβ usage in TMEV-infected B6 mice? Second, are there differences in the antigen-specific CD8+ T-cell clonotypes between the CNS and periphery? Third, are the T-cell clonotypes maintained in the CNS during the viral infection? Fourth, what is the functional avidity of T cells accumulating in the CNS during this virus infection? Last, what possible factors are associated with repertoire selection and expansion in the CNS? Our results show that Vβ6+ CD8+ T cells preferentially expand in the CNS during viral infection. Further analyses of the CDR3 region of antigen-specific Vβ6+ CD8+ T cells by spectratyping and sequencing indicate that distinct T-cell clonotypes are expanded in the CNS compared to those in the periphery. T cells expressing a particular Vβ6-CDR3-Jβ1.1 sequence are preferentially retained in the CNS during the course of viral infection. Interestingly, these T cells are capable of producing gamma interferon (IFN-γ) upon stimulation and display moderate avidity for the cognate epitope. We believe that our findings will provide important information regarding the CD8+ T-cell repertoire during viral infection and that these results may help to provide a better understanding of antiviral CD8+ T-cell immunity in the CNS. |
| |
Keywords: | |
|
|