首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L.
Authors:S SALLEO  M A LO GULLO  P TRIFILÒ  & A NARDINI
Institution:Dipartimento di Biologia, Universitàdi Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy and; Dipartimento di Scienze Botaniche, Universitàdi Messina, Salita Sperone 31, 98166 Messina S. Agata, Italy
Abstract:Xylem recovery from embolism was studied in Laurus nobilis L. stems that were induced to cavitate by combining negative xylem pressure potentials (PX = ?1.1 MPa) with positive air pressures (PC) applied using a pressure collar. Xylem refilling was measured by recording the percentage loss of hydraulic conductance (PLC) with respect to the maximum 2 min, 20 min and 15 h after pressure release. Sodium orthovanadate (an inhibitor of many ATP‐ases) strongly inhibited xylem refilling while fusicoccin (a stimulator of the plasma membrane H+‐ATPase) promoted complete embolism reversal. So, the refilling process was interpreted to result from energy‐dependent mechanisms. Stem girdling induced progressively larger inhibition to refilling the nearer to the embolized stem segment phloem was removed. The starch content of wood parenchyma was estimated as percentages of ray and vasicentric cells with high starch content with respect to the total, before and after stem embolism was induced. A closely linear positive relationship was found to exist between recovery from PLC and starch hydrolysis. This, was especially evident in vasicentric cells. A mechanism for xylem refilling based upon starch to sugar conversion and transport into embolized conduits, assisted by phloem pressure‐driven radial mass flow is proposed.
Keywords:Laurus nobilis L    stem  xylem embolism  refilling  vanadate  fusicoccin  girdling  starch content
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号