首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities
Authors:Dariusz M Niedzwiedzki  Alastair T Gardiner  " target="_blank">Robert E Blankenship  Richard J Cogdell
Institution:1.Photosynthetic Antenna Research Center,University in St Louis,St. Louis,USA;2.Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences,University of Glasgow,Glasgow,UK;3.Department of Biology,Washington University in St Louis,St. Louis,USA;4.Department of Chemistry,Washington University in St Louis,St. Louis,USA
Abstract:Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ?pucBAabce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1–reaction centers (LH1–RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2–3 times larger for ICMs accumulating LH2 complexes with the classical B800–850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ?pucBAabce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号