首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane potentials,electrolyte contents,cell pH,and some enzyme activities of fibroblasts
Authors:Y C Yen-Chow  S Y Chow  W S S Jee  D M Woodbury
Institution:(1) Division of Neuropharmacology and Epileptology School of Medicine, University of Utah, Salt Lake City, Utah;(2) Department of Physiology, School of Medicine, University of Utah, Salt Lake City, Utah;(3) Division of Radiobiology, Department of Pharmacology, School of Medicine, University of Utah, Salt Lake City, Utah
Abstract:Summary The resting membrane potential of the cultured fibroblasts derived from rabbit subcutaneous tissues was −10.2±0.20 mV (n=390). This potential was affected by the potassium concentration in the culture medium, but not by other chemical or hormonal preparations, such as dibutyryladenosine 3′,5′-cyclic monophosphate (0.5 to 5.0 mmol/l), sodium fluoride (10−5 to 10−4 M), hydrocortisone (10−7 to 10−6 M), parathyroid extract (0.5 to 1.0 U/ml), or thyrotrophin (5 to 10 mU/ml). The Na+, K+, and Cl concentrations of the cultured fibroblasts were 35.4, 85.7, and 22.6 mmol/l cell water, respectively. The water and protein contents of these cells were 82.1 and 9.18 g/100-g cells, respectively. The intracellular pH of fibroblasts as determined by 14C] dimethyloxazolidine-2, 4-dione, and3H2O ranged between 6.9 and 7.1 when the pH of the culture medium was maintained at 7.4. The activiities of Na+, K+-, HCO3 -, and Ca++, Mg++-ATPases in these cultured cells were 19.0±2.1, 13.6±2.1, and 6.6±1.2 nmol pi/mg protein per minute, respectively, and the carbonic anhydrase activity was 0.054 U/mg protein. Calculations based on the values for the membrane potential and the electrolyte concentrations observed in this study indicate that Na+, K+, Cl, and H+ are not distributed according to their electrochemical gradients across the cell membrane. Na+, Cl, and H+ are actively transported out of the cells and K+ into the cells. This study was supported by Grant AM20935 from the NIAMDD, NIH, Bethesda, Maryland, and National Aeronautics & Space Administration NASA-Ames Grant NAG 2-108 and U.S. Department of Energy Contract DE-AC02-76-EV-00119. D. M. W. is the recipient of a Research Career Award (5-K6-NB-13838), NINCDS, NIH.
Keywords:fibroblast  membrane potential  electrolytes  enzyme activities  pH  water and protein content
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号