首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Elevation of glutathione in phenylalanine mustard-resistant murine L1210 leukemia cells
Authors:S Ahmad  L Okine  B Le  P Najarian  D T Vistica
Institution:Laboratory of Pharmacology and Experimental Therapeutics, National Cancer Institute, Bethesda, Maryland 20892.
Abstract:Murine L1210 leukemia cells resistant to the antineoplastic agent L-phenylalanine mustard have a 1.5-2.0-fold elevation in their cellular GSH and GSSG content as compared to drug-sensitive cells. Cellular uptake of L-U-14C]cystine and its incorporation into GSH of the resistant tumor are correspondingly elevated. Synthesis of gamma-glutamylcysteine, GSH, and GSSG is elevated 1.5-2.0-fold in cell-free preparations of the resistant tumor. This increased synthesis of GSH is attributed to increased cellular content (1.6-fold) of gamma-glutamylcysteine synthetase. GSH synthetase activity is equivalent in both drug-sensitive and -resistant cells. Investigation into the hydrolysis of selected peptides by cell-free preparations of both sensitive and resistant tumors suggest that aminopeptidase M participates in the formation of L-cysteine from L-Cys-Gly. This is supported by the observation that these preparations readily degrade L-Leu-p-nitroanilide and L-Ala-L-Ala-L-Ala, known substrates for aminopeptidase M, but not dipeptidase. The failure of the tumors to degrade Gly-D-Ala, a dipeptidase substrate, and the marked inhibition of L-Ala-Gly, L-Cys-Gly, and L-Ala-L-Ala-L-Ala hydrolysis by Bestatin further support a role for aminopeptidase M in the generation of L-cysteine from L-Cys-Gly. These results suggest that the drug-resistant tumor cell has developed an efficient mechanism for maintenance of elevated GSH which involves both gamma-glutamyl transpeptidase-initiated catabolism of GSH to cysteine and its reutilization by gamma-glutamylcysteine synthetase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号