首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of glutamine synthetase, aspartokinase, and total protein turnover in Klebsiella aerogenes
Authors:Richard M Fulks  Earl R Stadtman
Abstract:When suspensions of Klebsiella aerogenes are incubated in a nitrogen-free medium there is a gradual decrease in the levels of acid-precipitable protein and of aspartokinase III (lysine-sensitive) and aspartokinase I (threonine-sensitive) activities. In contrast, the level of glutamine synthetase increases slightly and then remains constant. Under these conditions, the glutamine synthetase and other proteins continue to be synthesized as judged (a) by the incorporation of 14C]leucine into the acid-precipitable protein fraction and into protein precipitated by anti-glutamine synthetase antibodies, (b) by the fact that growth-inhibiting concentrations of chloramphenicol also inhibit the incroporation of 14C]leucine into protein and into protein precipitated by anti-glutamine synthetase antibody, and (c) by the fact that chloramphenicol leads to acceleration in the loss of aspartokinases I and III and promotes a net decrease in the level of glutamine synthetase and its cross-reactive protein. The loss of aspartokinases I and III in cell suspensions is stimulated by glucose and is inhibited by 2,4-dinitrophenol. Glucose also stimulates the loss of aspartokinases and glutamine synthetase in the presence of chloramphenicol. Cell-free extracts of K. aerogenes catalyze rapid inactivation of endogenous glutamine synthetase as well as exogeneously added pure glutamine synthetase. This loss of glutamine synthetase is not associated with a loss of protein that cross-reacts with anti-glutamine synthetase antibodies. The inactivation of glutamine synthetase in extracts is not due to adenylylation. It is partially prevented by sulfhydryl reagents, Mn2+, antimycin A, 2,4-dinitrophenol, EDTA, anaerobiosis and by dialysis. Following 18 h dialysis, the capacity of extracts to catalyze inactivation of glutamine synthetase is lost but can be restored by the addition of Fe2+ (or Ni2+ together with ATP (or other nucleoside di- and triphosphates. After 40–60 h dialysis Fe3+ together with NADH (but not ATP) are required for glutamine synthetase inactivation. The results suggest that accelerated protein degradation in cells exposed to nitrogen-limited conditions reflects the differential destruction of some proteins, including aspartokinases I and III, in order to sustain the biosynthesis of others such as glutamine synthetase. The loss of glutamine synthetase activity in cell-free extracts is likely mediated in part by mixed-function oxidation systems and could represent a ‘marking’ step in protein turnover.
Keywords:Glutamine synthetase  Aspartokinase  Protein turnover  (K  aerogenes)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号