首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential.
Authors:I Johansson  C Larsson  B Ek  and P Kjellbom
Abstract:We show that homologs of the major intrinsic protein (MIP) family are major integral proteins of the spinach leaf plasma membrane and constitute approximately 20% of integral plasma membrane protein. By using oligonucleotide primers based on partial amino acid sequences for polymerase chain reaction and screening of a spinach leaf cDNA library, we obtained two full-length clones of MIP homologs (pm28a and pm28b). One of these clones, pm28a, was sequenced, and it encodes a protein (PM28A) of 281 amino acids with a molecular mass of 29.9 kD. DNA gel blots indicated that PM28A is the product of a single gene, and RNA gel blots showed that pm28a is ubiquitously expressed in the plant. In vivo phosphorylation of the 28-kD polypeptide(s), corresponding to PM28A and PM28B, was dependent on apoplastic water potential, suggesting a role in regulation of cell turgor for these putative aquaporins. In vitro, only one of the homologs, PM28A, was phosphorylated. Phosphorylation of PM28A occurred on Ser-274, seven amino acids from the C terminus of the protein, within a consensus phosphorylation site (Ser-X-Arg) for vertebrate protein kinase C. In vitro phosphorylation of PM28A was due to a plasma membrane-associated protein kinase and was strictly dependent on submicromolar concentrations of Ca2+.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号