首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The causes of altered chlorophyll fluorescence quenching induction in the Arabidopsis mutant lacking all minor antenna complexes
Authors:Alexandra J Townsend  Francesco Saccon  Vasco Giovagnetti  Sam Wilson  Petra Ungerer  Alexander V Ruban
Institution:School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
Abstract:Non-photochemical quenching (NPQ) of chlorophyll fluorescence is the process by which excess light energy is harmlessly dissipated within the photosynthetic membrane. The fastest component of NPQ, known as energy-dependent quenching (qE), occurs within minutes, but the site and mechanism of qE remain of great debate. Here, the chlorophyll fluorescence of Arabidopsis thaliana wild type (WT) plants was compared to mutants lacking all minor antenna complexes (NoM). Upon illumination, NoM exhibits altered chlorophyll fluorescence quenching induction (i.e. from the dark-adapted state) characterised by three different stages: (i) a fast quenching component, (ii) transient fluorescence recovery and (iii) a second quenching component. The initial fast quenching component originates in light harvesting complex II (LHCII) trimers and is dependent upon PsbS and the formation of a proton gradient across the thylakoid membrane (ΔpH). Transient fluorescence recovery is likely to occur in both WT and NoM plants, but it cannot be overcome in NoM due to impaired ΔpH formation and a reduced zeaxanthin synthesis rate. Moreover, an enhanced fluorescence emission peak at ~679?nm in NoM plants indicates detachment of LHCII trimers from the bulk antenna system, which could also contribute to the transient fluorescence recovery. Finally, the second quenching component is triggered by both ΔpH and PsbS and enhanced by zeaxanthin synthesis. This study indicates that minor antenna complexes are not essential for qE, but reveals their importance in electron stransport, ΔpH formation and zeaxanthin synthesis.
Keywords:LHCII  Minor antenna  Non-photochemical quenching  Photosystem II  9-AA  9-aminoacridine  ΔpH  proton gradient across the thylakoid membrane  AL  actinic light  DAD  diaminodurene  DCCD  DCMU  3-(3  4-dichlorophenyl)-1  1-dimethylurea  DES  de-epoxidation state  Fm  maximum fluorescence in the dark with all reaction centres closed  Fm′  maximum fluorescence in the dark-adapted state (Fm) during the course of actinic illumination (Fm′)  Fo  minimum fluorescence in the dark with all reaction centres open  Fo′  minimum fluorescence in the dark after illumination  FR  far red (light)  Fv  variable fluorescence defined as Fm-Fo  Fv/Fm  maximum quantum yield of photosystem II in the dark  LHC  light harvesting complex  MV  methyl viologen  NoM  no minor antenna complex mutant  NPQ  non-photochemical quenching  PSI  photosystem I  PSII  photosystem II  qE  energy-dependent quenching  qI  photoinhibitory quenching  qT  state transitions  qZ  zeaxanthin-dependent quenching  SP  saturating pulse  WT  wild type
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号