首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ontogenesis in the Fucophyceae: case studies and comparison of fucoid zygotes and Sphacelaria apical cells
Institution:1. Department of Chemical and Physical Sciences, University of Toronto, 3359 Mississauga Road North, Ontario L5L 1C6, Canada;2. Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5A, 40530 Göteborg, Sweden;3. Institut für Geologie, Universität Hamburg, Bundesstr. 55, 20416 Hamburg, Germany;4. Greenland Climate Research Centre, Greenland Institute of Natural Resources, Box 570, 3900 Nuuk, Greenland
Abstract:In multicellular eukaryotes, the zygote, a single cell, gives rise to the different cell types of the organism. The study of the mechanisms involved is a key point of developmental biology. Generally, the first stages are characterized by an orderly sequence of asymmetrical divisions resulting from an initial developmental polarity. The establishment of this initial polarity has been the subject of numerous studies in animals, but not in higher plants since the zygote is encased in several layers of tissues that prevent experimental approaches. Moreover, plant development is characterized by two successive ontogenetic steps: the construction of the embryonic apico-basal axis and the establishment of meristems in charge of organogenesis. Members of the Fucophyceae provide good models for the investigation of these processes. Any inferred homology of mechanisms must take into account the polyphyletic nature of the algae. This paper is a tentative review of two case studies: fucoid zygotes and Sphacelaria apical cells, and deals respectively with the two successive ontogenetic steps characteristic of higher plant development. The first part concerns development of the fucoid zygotes. Fucoid zygotes, including those of different species, are considered as model systems in plants for studying the establishment of the polarity axis because, at the moment of fertilization, they do not have any morphological or biochemical polarity. This report concerns progress in the identification of some cellular or molecular mechanisms involved in the settlement and/or stabilization of the polarity axis, and the consequence of this polar organisation for the control of asymmetrical divisions and the building of a functional embryo. The second part concerns the apical cell of Sphacelaria as a model for establishing and maintaining a meristematic cell. The apical cell exhibits a permanent polarized organisation throughout repetitive asymmetric divisions and can be comparatively analysed in situ and isolated as a protoplast. This allowed us to investigate the evolution of the cytoplasmic cytoskeleton, centrosomes and the mitotic apparatus during the cell cycle in relation to the cell polarity; particularly the interactions between the cytoskeleton and cell wall. For the two models, the results are compared with mechanisms involved in the development of other multicellular organisms, and their value in gaining an insight into higher plant ontogenesis is assessed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号