首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High Ratio of Bacteriochlorophyll Biosynthesis Genes to Chlorophyll Biosynthesis Genes in Bacteria of Humic Lakes
Authors:Alexander Eiler  Sara Beier  Christin S?wstr?m  Jan Karlsson  Stefan Bertilsson
Institution:Limnology/Department of Ecology & Evolution, Uppsala University, Uppsala, Sweden,1. Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Box 62, 98107 Abisko, Sweden,2. Hawaii Institute of Marine Biology, SOEST, University of Hawaii at Mānoa, Kaneohe, Hawaii,3. Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia4.
Abstract:Recent studies highlight the diversity and significance of marine phototrophic microorganisms such as picocyanobacteria, phototrophic picoeukaryotes, and bacteriochlorophyll- and rhodopsin-holding phototrophic bacteria. To assess if freshwater ecosystems also harbor similar phototroph diversity, genes involved in the biosynthesis of bacteriochlorophyll and chlorophyll were targeted to explore oxygenic and aerobic anoxygenic phototroph composition in a wide range of lakes. Partial dark-operative protochlorophyllide oxidoreductase (DPOR) and chlorophyllide oxidoreductase (COR) genes in bacteria of seven lakes with contrasting trophic statuses were PCR amplified, cloned, and sequenced. Out of 61 sequences encoding the L subunit of DPOR (L-DPOR), 22 clustered with aerobic anoxygenic photosynthetic bacteria, whereas 39 L-DPOR sequences related to oxygenic phototrophs, like cyanobacteria, were observed. Phylogenetic analysis revealed clear separation of these freshwater L-DPOR genes as well as 11 COR gene sequences from their marine counterparts. Terminal restriction fragment length analysis of L-DPOR genes was used to characterize oxygenic aerobic and anoxygenic photosynthesizing populations in 20 lakes differing in physical and chemical characteristics. Significant differences in L-DPOR community composition were observed between dystrophic lakes and all other systems, where a higher proportion of genes affiliated with aerobic anoxygenic photosynthetic bacteria was observed than in other systems. Our results reveal a significant diversity of phototrophic microorganisms in lakes and suggest niche partitioning of oxygenic and aerobic anoxygenic phototrophs in these systems in response to trophic status and coupled differences in light regime.Recent studies have discovered novel phototrophic organisms and pointed us to their diversity in the oceans (1, 2, 3, 27, 39, 47, 50). Microorganisms such as picocyanobacteria, picoeukaryotes, and bacteriochlorophyll- and rhodopsin-containing bacteria use diverse photopigments to photosynthesize. These organisms represent a significant fraction of marine microbial communities and are likely to be ecologically and biogeochemically significant (1, 2, 13, 27, 28, 35, 39, 47). Several molecular studies based on genes of the puf operon, coding for the bacteriochlorophyll subunits, have shown that Roseobacter and Roseobacter-like bacteria constitute a significant portion of the aerobic anoxygenic photosynthetic bacteria (AAnPB) in marine waters (37). Microscopic counts have revealed that AAnPB contribute 1 to 16% to the total marine bacterioplankton in the euphotic zone and that there are regional and temporal differences in their abundances (see, for example, references 28, 41, and 50). Still, the global significance of this functional group and the role of, for example, AAnPB in the oceanic flow of energy and carbon are controversial (13, 20, 27, 28, 41, 48). Most AAnPB isolated so far have been described as photoorganoheterotrophs that rely primarily on organic substrates for growth but can derive a significant portion of their energy requirements from solar radiation (references 13 and 26 and references therein).AAnPB have been isolated from various freshwater habitats, ranging from cyanobacterial mats (49) to the pelagic zone of oligotrophic lakes (19, 38), but there are so far no studies of freshwater AAnPB diversity and community composition based on culture-independent techniques. A recent survey revealed some first patterns in the distribution of bacteriochlorophyll a-containing cells as well as the concentrations of the pigments in lakes ranging from oligotrophic to eutrophic. Infrared epifluorescence microscopy, fluorescence emission spectroscopy, and high-performance liquid chromatography were used to demonstrate that AAnPB may constitute up to 80% of total bacterial biomass in some low-productive lakes, implying that they are an important component of many lake ecosystems (33). In addition, genes encoding proteins for light harvesting (bacteriochlorophyll pufL and pufM gene clusters) have been identified in fosmid libraries from bacteria of the Delaware River (48) and in a functional gene survey of an Antarctic lake (24).In the present study, we used a specific primer set that amplifies the L subunit of the dark-operative protochlorophyllide oxidoreductase (L-DPOR) and its homologs (nitrogenase and chlorophyllide oxidoreductase COR]). The dark-operative protochlorophyllide oxidoreductase (DPOR) is encoded by three genes (chlN-bchN, chlB-bchB, and chlL-bchL) and catalyzes the reductive formation of chlorophyllide from protochlorophyllide during biosynthesis of chlorophylls (chl) and bacteriochlorophylls (bch) in the dark (see reference 7 for more detail). Analysis of the deduced amino acid sequences indicated the presence of significant sequence dissimilarity in DPOR between oxygenic and anoxygenic photosynthetic organisms (5, 8, 16, 17, 18). Molecular studies have shown that AAnPB contain only DPOR (15) but that cyanobacteria, algae, and gymnosperms (nonflowering plants) contain both DPOR and a light-dependent protochlorophyllide oxidoreductase (POR) which carries one of the only two known enzymes other than photochemical reaction centers with light-driven catalysis (7).Despite the lack of POR, AAnPB are able to modify their chlorophyllide so that their absorption spectrum is broadened to span from <350 to <1,050 nm (usually 365 to 770 nm) in the UV and near-infrared ranges. This spectral characteristic allows AAnPB to utilize light at a wavelength other than that utilized by chlorophyll-containing cyanobacteria and algae. The first step in a series of modifications is performed by COR, an enzyme that is found in anoxygenic phototrophic bacteria and that transforms chlorophyllide to bacteriochlorophyll (7).In the present study, we assessed the diversity of L-DPOR, COR, and the coamplified homolog nifH genes in bacteria of seven different lakes by using PCR-based clone libraries parallel to a molecular fingerprinting technique to study L-DPOR gene composition in a larger data set (comprising 20 Swedish lakes). By using L-DPOR genes as our target, we simultaneously assessed the compositions of both AAnPB and oxygenic phototrophs in freshwater ecosystems and their distributions along trophic gradients.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号