Abstract: | Helicobacter pylori uses flagellum-mediated chemotaxis to promote infection. Bacterial flagella change rotational direction by changing the state of the flagellar motor via a subcomplex referred to as the switch. Intriguingly, the H. pylori genome encodes four switch complex proteins, FliM, FliN, FliY, and FliG, instead of the more typical three of Escherichia coli or Bacillus subtilis. Our goal was to examine whether and how all four switch proteins participate in flagellation. Previous work determined that FliG was required for flagellation, and we extend those findings to show that all four switch proteins are necessary for normal numbers of flagellated cells. Furthermore, while fliY and fliN are partially redundant with each other, both are needed for wild-type levels of flagellation. We also report the isolation of an H. pylori strain containing an R54C substitution in fliM, resulting in bacteria that swim constantly and do not change direction. Along with data demonstrating that CheY-phosphate interacts with FliM, these findings suggest that FliM functions in H. pylori much as it does in other organisms.Flagellar motility is important for gastric colonization by the ulcer-causing bacterium Helicobacter pylori and also for suborgan localization within the stomach (16-18, 33, 45). Flagellar motility is regulated by a set of signal transduction proteins, collectively referred to as the chemotaxis pathway, that control the migration of microbes in response to environmental cues. This pathway is well elucidated in organisms such as Escherichia coli, Salmonella enterica serovar Typhimurium (referred to hereinafter as S. Typhimurium), and Bacillus subtilis. Sequence analysis of the genomes of other flagellated bacteria, including H. pylori, has suggested that there is diversity in the set of chemotaxis proteins that a particular microbe contains. Here we analyze the diversity of H. pylori''s flagellar switch proteins, which control flagellar rotational direction.The molecular mechanisms underlying chemotactic signal transduction in E. coli and S. Typhimurium have been extensively studied (7, 50) The overall function of this pathway is to convert the perception of local environmental conditions into a swimming response that drives bacteria toward beneficial conditions and away from harmful ones. Such migration is accomplished by interspersing straight, or smooth, swimming with periods of random reorientations or tumbles. Smooth swimming occurs when the flagella rotate counterclockwise (CCW), while reorienting occurs when the flagella rotate clockwise (CW). The chemotaxis signal transduction system acts to appropriately alter flagellar rotation. The canonical chemotaxis pathway consists of a chemoreceptor bound to the coupling protein CheW, which is in turn bound to the histidine kinase CheA. If a beneficial/attractant ligand is not bound (or a repellant is bound) to the chemoreceptor, CheA autophosphorylates and passes a phosphate to the response regulator CheY. Phosphorylated CheY (CheY-P) interacts with a protein complex called the flagellar switch (discussed at more length below). This interaction causes a switch in the direction of flagellar rotation from CCW to CW, thus reorienting the cells, via an as-yet-unknown mechanism (reviewed in references 23 and 29).Bacterial flagella are complex, multiprotein organelles (reviewed in references 23, 25, and 29). Each flagellum is composed of several parts, including the filament, the hook, and the basal body (listed from outside the cell to inside the cytoplasm). The flagellar basal body spans from the outer membrane to the cytoplasm and is responsible for rotating the flagellum. This part of the flagellum is further made up of several subassemblies that are named for their locations. The innermost is called the switch or C ring, based on its location in the cytoplasm. The switch is comprised of three proteins in E. coli, FliM, FliN, and FliG (reviewed in references 23 and 29). Experimental evidence strongly suggests that these proteins, along with the stator proteins MotA and MotB, drive motor rotation, because one can obtain point mutations in these proteins that disrupt rotation but not flagellation. Null mutations, however, in fliM, fliN, or fliG also result in aflagellated cells, a phenotype that has been proposed to arise because these proteins are needed to complete the flagellar export apparatus (23).There is extensive structural information about each of the switch proteins and their arrangement in the flagellum (reviewed in references 23 and 29, with additional key references added below). There are 26 copies of FliG, 34 copies of FliM, and ∼136 copies of FliN, arranged in a circular structure at the base of each flagellum. FliM is positioned between FliG and FliN and interacts with both. FliM also binds CheY-P via sequences in the first 16 amino acids, and elsewhere (15), to play a key role in switching flagellar rotation direction. FliG, the switch protein closest to the cytoplasmic membrane, interacts with the stator protein MotA, the FliF membrane protein that forms the flagellar basal-body MS ring, and the membrane-bound respiratory protein fumarate reductase (11). FliG has the most direct role in creating flagellar rotation. FliN is the most cytoplasmic component of the switch, and its role is not fully understood. FliN may play a role in switching by possibly binding CheY-P directly (36) and an additional role in flagellar assembly, because it binds to the flagellar export protein FliH and localizes it, along with its interaction partners FliI and FliJ, to the flagellum (20, 28, 36). FliN contains significant sequence similarity to secretion proteins of type III secretion systems of Yersinia pestis and Shigella flexneri. The conserved domain comprises most of FliN and is called a SpoA or PFAM PF01052 domain. Other FliN homologs include YscL and Spa33 (25).The flagellar switch of another well-studied chemotactic microbe, B. subtilis, differs slightly in its protein makeup from that of E. coli. B. subtilis contains FliM and FliG, which function similarly to their E. coli counterparts, but instead of FliN it has a protein called FliY (6, 42). FliY of B. subtilis has two functional domains, one of which is homologous to E. coli FliN, while the other shares similarity with the B. subtilis chemotaxis protein CheC, which functions to dephosphorylate CheY-P. FliY is the most active known phosphatase of CheY-P in B. subtilis (40, 41).H. pylori contains homologs of many of the chemotaxis and flagellar genes found in other organisms (32, 48). Curiously, its genome encodes four predicted flagellar switch proteins, FliG, FliM, and both FliY and FliN, although FliY was not annotated in the original genome analysis. Previous work had determined that H. pylori strain SS1 lacking fliG was aflagellated (1), but the other switch proteins had not been analyzed. As noted above, FliN and FliY share a FliN domain and so could have functional redundancy. fliY and fliM appear to reside in an operon, suggesting that the two encoded proteins function together (see Fig. S1 in the supplemental material).Since having all four flagellar switch proteins in one microbe is unusual, we were curious as to whether all four serve “switch” functions. As noted above, fliM and fliG deletions typically result in an aflagellated phenotype in other organisms. Others had previously shown that fliG mutations have this phenotype in H. pylori (1), and we additionally show here that fliM null mutants are also almost completely aflagellate. In spite of a shared domain that might indicate functional redundancy, we show that fliN and fliY are each necessary for normal numbers of flagellated cells. Finally, we characterize a fliM point mutant that results in a lock-smooth swimming bias and demonstrate physical interaction between CheY-P and FliM, indicating that FliM responds to CheY signaling in H. pylori in a manner similar to that found in E. coli, S. Typhimurium, B. subtilis, and other studied organisms. |