首页 | 本学科首页   官方微博 | 高级检索  
     


L-cysteine-mediated destabilization of dinitrosyl iron complexes in proteins.
Authors:P A Rogers  H Ding
Affiliation:Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
Abstract:
Nitric oxide is a signaling molecule in intercellular communication as well as a powerful weapon used by macrophages to kill tumor cells and pathogenic bacteria. Here, we show that when Escherichia coli cells are exposed to nitric oxide, its ferredoxin [2Fe-2S] cluster is nitrosylated, forming the dinitrosyl iron complex with a characteristic EPR signal at g(av) = 2.04. Such formed ferredoxin dinitrosyl iron complex is efficiently repaired in E. coli cells even in the absence of new protein synthesis. However, the repair activity is completely inactivated once E. coli cells are disrupted, indicating that repairing the ferredoxin dinitrosyl iron complex requires cellular reducing equivalents. In search of such cellular factors, we find that l-cysteine can effectively eliminate the EPR signal of the ferredoxin dinitrosyl iron complex and release the ferrous iron from the complex. In contrast, N-acetyl-l-cysteine and reduced glutathione are much less effective. l-Cysteine seems to have a general function, since it can also remove the otherwise stable dinitrosyl iron complexes from proteins in the cell extracts prepared from the E. coli cells treated with nitric oxide. We propose that l-cysteine is responsible for removing the dinitrosyl iron complexes from the nitric oxide-modified proteins into which a new iron-sulfur cluster will be reassembled.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号