首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A model of fluid-biofilm interaction using a Burger material law
Authors:Towler Brett W  Cunningham Al  Stoodley Paul  McKittrick Ladean
Institution:Civil Engineering Department, Montana State University, 205 Cobleigh Hall, Bozeman, Montana 59717-3900, USA. BrettT@ce.montana.edu
Abstract:A two-dimensional finite element model of the biofilm response to flow was developed. The numerical code sequentially coupled the fluid dynamics of turbulent, incompressible flow with the mechanical response of a single hemispherical biofilm cluster (approximately 100 microm) attached to the flow boundary. A non-linear Burger material law was used to represent the viscoelastic response of a representative microbial biofilm. This constitutive law was incorporated into the numerical model as a Prony series representation of the biofilm's relaxation modulus. Model simulations illuminated interesting details of this fluid-structure interaction. Simulations revealed that softer biofilms (characterized by lower elastic moduli) were highly susceptible to lift forces and consequently were subject to even greater drag forces found higher in the velocity field. A bimodal deformation path due to the two Burger relaxation times was also observed in several simulations. This suggested that interfacial biofilm may be most susceptible to hydrodynamically induced detachment during the initial relaxation time. This result may prove useful in developing removal strategies. Additionally, plots of lift versus drag suggested that the deformation paths taken by viscoelastic biofilms are largely insensitive to specific material coefficients. Softer biofilms merely seem to follow the same path (as a stiffer biofilm) at a faster rate. These relationships may be useful in estimating the hydrodynamic forces acting on an attached biofilm based on changes in scale and cataloged material properties.
Keywords:biofilm  viscoelastic  biofouling  hydraulic  burger  mechanics
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号