首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exchange of 3-O-methylglucose in isolated fat cells. Concentration dependence and effect of insulin.
Authors:J Vinten  J Gliemann  K Osterlind
Abstract:3-O-14C]Methylglucose was used to study the insulin action on the sugar transport in white fat cells. The experiments comprised determinations of the 3-O-methylglucose space at stationary distribution, of the rate constants for 3-O-methylglucose equilibrium exchange under various conditions, and of the 3-O-methylglucose inhibition of the lipogenesis from glucose. The following was found. The intracellular distribution space for 3-O-methylglucose at equilibrium was unaffected by insulin and was identical with the intracellular 3H2O space. The half-time for the equilibrium exchange of 3-O-methylglucose at a concentration of 25 mM was about 240 s in the absence of insulin and about 15 s with insulin (0.7 muM) present. Addition of phloridzin (5 mM) decreased the rate of the exchange process about 25-fold in both cases. The self-exchange of 3-O-methylglucose (1 mM) was at least 50 times faster than the self-exchange of L-glucose (1 mM). The concentration dependence of the 3-O-methylglucose exchange rate was approximately hyperbolic both in the absence and the presence of insulin, although the saturation of the transport mechanism at high concentrations of sugar was not as complete as predicted. In the absence of insulin the estimate of the half-saturation constant (Kt) was about 5 mM; that of the maximal exchange rate (Vmax) varied from 0.07 mmol s-1/liter of intracellular water to 0.2 mmol s-1 liter-1. In the presence of insulin Kt remained about 5 mM, whereas Vmax was increased to about 1.7 mmol s-1 liter-1. The latter estimate was reproducible within about 20%. The incorporation of trace amounts of U-14C]glucose into intracellular lipids was inhibited by unlabeled 3-O-methylglucose pre-equilibrated over the membrane. The inhibition constant estimated from such experiments was about 5 mM both in the absence and the presence of insulin, and the insulin-induced increase in the rate of glucose incorporation was similar to the increase in the rate of the 3-O-methylglucose exchange process. It is concluded that exchange of 3-O-methylglucose proceeds via a mechanism which shows stereospecificity and saturability and that insulin acts by increasing the maximal transport capacity without changing the half-saturation constant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号