首页 | 本学科首页   官方微博 | 高级检索  
     


Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes
Authors:Sharonov Alexey  Hochstrasser Robin M
Affiliation:Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
Abstract:
Pep-1 is an amphiphatic peptide that can form noncovalent complexes with a cargo protein with subsequent delivery into a live cell. In this study, the behavior of Pep-1 was directly visualized by fluorescent imaging techniques at the single-molecule level of sensitivity. The interactions of Pep-1 and two of its labeled fluorescent analogues with large and cell-sized giant unilamellar vesicles and supported bilayers are reported. The role of the bilayer charge and ionic strength of the medium were examined. Pep-1 caused fusion and association of vesicles, and it perturbed the vesicle's membrane. The association of the peptide with neutral bilayers was promoted by anchoring of the cysteamine moiety. The association of the peptide with the structural defects of the neutral membrane was very efficient. The electrostatic forces were shown to be important for the association of the peptide only in low ionic strength solutions and were completely diminished at physiological ionic strength. Pep-1 did not induce the association to the model membrane of a number of proteins chosen to exhibit a range of properties. The results suggest that Pep-1 assisted delivery of cargo in living cells may result from cooperative effects.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号