首页 | 本学科首页   官方微博 | 高级检索  
     


Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis
Authors:S W Ragsdale  H G Wood
Abstract:The purified carbon monoxide dehydrogenase from Clostridium thermoaceticum is the only protein required to catalyze an exchange reaction between carbon monoxide and the carbonyl group of acetyl-CoA. This exchange requires that the CO dehydrogenase bind the methyl, the carbonyl, and the CoA groups of acetyl-CoA, then equilibrate the carbonyl with CO in the solution and re-form acetyl-CoA. CoA is not necessary for the exchange and, in fact, inhibits the reaction. These studies support the view that CO dehydrogenase is the condensing enzyme that forms acetyl-CoA from its component parts. Carbon dioxide also exchanges with the C-1 of acetyl-CoA, but at a much lower rate than does CO. At 50 degrees C and pH 5.3, the optimal pH, the turnover number is 70 mol of CO exchanged per min/mol of enzyme. Low potential electron carriers are stimulatory. The Km app for stimulation by ferredoxin is 50-fold less than the value for flavodoxin. Neither ATP or Pi stimulate the exchange. The EPR spectrum of the CO-reacted enzyme is markedly changed by binding of CoA or acetyl-CoA. Arginine residues of the CO dehydrogenase appear to be involved in the active site, possibly by binding acetyl-CoA. Mersalyl acid, methyl iodide, 5,5-dithiobis-(2-nitrobenzoate), and sodium dithionite inhibit the exchange reaction. A scheme is presented to account for the role of CO dehydrogenase in the exchange reaction and in the synthesis of acetate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号