首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, proliferation and collagen synthesis
Authors:M Thie  W Schlumberger  R Semich  J Rauterberg  H Robenek
Institution:Institute for Arteriosclerosis Research, University of Münster, Federal Republic of Germany.
Abstract:Adult pig smooth muscle cells (SMC) were isolated from the aortic media by collagenase digestion, subcultured as monolayer, and then re-integrated into a three-dimensional network of type I collagen. The contractile state characteristic for resident arterial wall SMC changed to the synthetic, fibroblast-like state. The cells reorganized the randomly orientated collagen fibrils causing the lattice to shrink. The influence of the extracellular matrix on the ultrastructure, the proliferation, and the collagen synthesis of these SMC embedded in the collagen lattice was investigated and compared to cells cultured in monolayer. The amount of total protein and collagens synthesized by SMC embedded in lattices was lowered as compared to monolayer cultures. Whereas total protein synthesis decreased continuously during the culture period, the proportion of collagen synthesis remained at a constant level. Although cells proliferated in lattices, proliferation was clearly slowed down as compared to monolayer cultures. The ultrastructure of entrapped synthetic state SMC was comparable to that of monolayer-cultured cells. Their cytoplasm was largely filled by elements of the endoplasmic reticulum, Golgi complexes and abundant mitochondria. With prolonged culture time, electron-dense granules as well as bodies containing whorled membranes could be found in the cytoplasm. These results indicate that synthetic state SMC can exhibit differential biosynthetic activity dependent on the actual matrix environment; cells seem to be able to sense the macromolecular composition of the extracellular matrix and to modify their production of matrix components accordingly.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号