首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endophytic fungi decrease available resources for the aphid Rhopalosiphum padi and impair their ability to induce defences against predators
Authors:TOBIAS ZÜST  SIMONE A HÄRRI  CHRISTINE B MÜLLER
Institution:Institute of Environmental Sciences, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Abstract:Abstract.  1. The production of winged morphs is a well known mechanism of induced defence in aphids to escape from natural enemies, and is also a reaction to poor resource quality.
2. Host plants of aphids often associate with endophytic fungi that have been shown to reduce the fitness of some species of aphids.
3. It was hypothesised that endophyte infection of host plants that represent a low quality plant resource should increase the aphid's induced response to a predator because both low plant quality and predator presence represent a stronger cue for wing production than predator presence alone.
4. In a laboratory experiment, bird cherry-oat aphids Rhopalosiphum padi L. were exposed to the factors predator threat and endophyte infection and the effects of these factors on the proportion of winged morphs produced by the aphid colonies was analysed.
5. The presence of endophytic fungi strongly decreased aphid colony sizes. When a predator threat was present, all colonies on endophyte-free grasses produced winged morphs whereas only a few colonies were able to produce winged morphs on endophyte-infected grasses. However, these few colonies produced larger proportions of winged morphs than colonies on endophyte-free grasses. Without a predator threat, no colonies on endophyte-infected grasses produced any winged morphs.
6. These results show that aphids in stressed conditions and with reduced fitness will only invest in inducible defences when predators are present but are unable to produce winged morphs in response to endophyte presence.
Keywords:Ladybird larvae              Neotyphodium coenophialum            non-lethal predator  pheromone  poor-quality host  reproductive compensation  wing induction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号