首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Reconstituted P2/Myelin-Lipid Multilayers
Authors:J Sedzik  A E Blaurock†  M Hoechli
Institution:Department of Anatomy, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.;Department of Biochemistry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A.
Abstract:A complex forms when bovine P2 protein is added to single-bilayer vesicles created by sonicating myelin lipids. The complex was studied by biochemical analysis, freeze-fracture (FF) and thin-section electron microscopy (EM), and by X-ray diffraction. Smaller amounts of P2 cause the vesicles to aggregate and fuse whereas larger amounts (greater than or equal to 4 wt%) cause multilayers to form. Binding saturates at 15 wt% P2. FF EM shows that large, flat multilayers form within 15 min of addition of P2. Only smooth fracture faces are seen, as expected for a peripheral membrane protein. X-ray diffraction shows a constant repeating distance in the multilayers: 86.0 +/- 0.7 A between the centers of bilayers in the range 4 wt% less than or equal to P2/(P2 + lipid) less than or equal to 15 wt%. Assuming a 53 A-thick bilayer, the space between bilayers is 33 A wide. This is a wider space than for myelin basic protein (MBP) (20-25 A wide). The respective widths are consistent with a compact, globular structure for P2 and a flattened shape for MBP. Calculated electron-density profiles of the lipids with and without P2 reveal the protein largely in the interbilayer spaces, with a small part possibly inserted into the lipid headgroup layers. The different proportions of P2 in the sciatic nerve of various species are tentatively correlated with the different average widths observed by X-ray diffraction for the cytoplasmic space (major period line) between bilayers in the respective sciatic myelins.
Keywords:P2 protein  Myelin lipids  Multilayers  Binding  Freeze-fracture electron microscopy  X-ray diffraction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号