Abstract: | Three different preparations of mouse pancreatic fragments where all the cells tested electrophysiologically showed (a) complete electrical coupling (control), (b) complete uncoupling (after 1-to 2-min exposure to 100% CO2), or (c) complete recoupling (1-2 min after removal of 100% CO2) were fixed, with the electrodes in situ, with 0.2% glutaraldehyde and freeze-fractured for quantitative analysis of acinar cell gap junctions. No obvious difference was observed between gap junctions of coupled and uncoupled acinar cells. However, quantitation revealed a small (2.3-5.6%) increase in particle diameter and spacing within junctions of uncoupled cells. Such increase was rapidly reversed upon cell recoupling. In all preparations, most of the gap junctions were made up of disordered arrays of particles but a few of them showed a more tight packing of their particles of which most had lost the usual globular appearance. These "amorphous" gap junctions had larger particle diameter but smaller particle spacing than the other gap junctions and these parameters were not modified during cell uncoupling. However, "amorphous" gap junctions were more frequent in the latter condition. |