首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of protease-resistant cervid prion protein in water from a CWD-endemic area
Authors:TA Nichols   Bruce Pulford   A Christy Wyckoff   Crystal Meyerett   Brady Michel   Kevin Gertig   Edward A Hoover   Jean E Jewell   Glenn C Telling   Mark D Zabel
Abstract:Chronic wasting disease (CWD) is the only known transmissible spongiform encephalopathy affecting free-ranging wildlife. Although the exact mode of natural transmission remains unknown, substantial evidence suggests that prions can persist in the environment, implicating components thereof as potential prion reservoirs and transmission vehicles.14 CWD-positive animals may contribute to environmental prion load via decomposing carcasses and biological materials including saliva, blood, urine and feces.57 Sensitivity limitations of conventional assays hamper evaluation of environmental prion loads in soil and water. Here we show the ability of serial protein misfolding cyclic amplification (sPMCA) to amplify a 1.3 × 10−7 dilution of CWD-infected brain homogenate spiked into water samples, equivalent to approximately 5 × 107 protease resistant cervid prion protein (PrPCWD) monomers. We also detected PrPCWD in one of two environmental water samples from a CWD endemic area collected at a time of increased water runoff from melting winter snow pack, as well as in water samples obtained concurrently from the flocculation stage of water processing by the municipal water treatment facility. Bioassays indicated that the PrPCWD detected was below infectious levels. These data demonstrate detection of very low levels of PrPCWD in the environment by sPMCA and suggest persistence and accumulation of prions in the environment that may promote CWD transmission.Key words: prions, chronic wasting disease, water, environment, serial protein misfolding cyclic amplification
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号