首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The organization of taste sensibilities in hamster chorda tympani nerve fibers
Authors:M E Frank  S L Bieber  D V Smith
Institution:Department of Biostructure and Function, University of Connecticut Health Center, Farmington 06032.
Abstract:Electrophysiological measurements of nerve impulse frequencies were used to explore the organization of taste sensibilities in single fibers of the hamster chorda tympani nerve. Moderately intense taste solutions that are either very similar or easily discriminated were applied to the anterior lingual surface. 40 response profiles or 13 stimulus activation patterns were considered variables and examined with multivariate statistical techniques. Three kinds of response profiles were seen in fibers that varied in their overall sensitivity to taste solutions. One profile (S) showed selectivity for sweeteners, a second (N) showed selectivity for sodium salts, and a third (H) showed sensitivity to salts, acids, and other compounds. Hierarchical cluster analysis indicated that profiles fell into discrete classes. Responses to many pairs of effective stimuli were covariant across profiles within a class, but some acidic stimuli had more idiosyncratic effects. Factor analysis of profiles identified two common factors, accounting for 77% of the variance. A unipolar factor was identified with the N profile, and a bipolar factor was identified with the S profile and its opposite, the H profile. Three stimulus activation patterns were elicited by taste solutions that varied in intensity of effect. Hierarchical cluster analysis indicated that the patterns fell into discrete classes. Factor analysis of patterns identified three common unipolar factors accounting for 82% of the variance. Eight stimuli (MgSO4, NH4Cl, KCl, citric acid, acetic acid, urea, quinine HCl, HCl) selectively activated fibers with H profiles, three stimuli (fructose, Na saccharin, sucrose) selectively activated fibers with S profiles, and two stimuli (NaNO3, NaCl) activated fibers with N profiles more strongly than fibers with H profiles. Stimuli that evoke different patterns taste distinct to hamsters. Stimuli that evoke the same pattern taste more similar. It was concluded that the hundreds of peripheral taste neurons that innervate the anterior tongue play one of three functional roles, providing information about one of three features that are shared by different chemical solutions.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号