Abstract: | ![]() A number of mutant Chinese hamster ovary (CHO) cell lines resistant to the cytotoxic action of alpha-amanitin have been isolated. The alpha-amanitin sensitivity of the different mutant cell lines varied widely, but correlated well with the alpha-amanitin sensitivity of the RNA polymerase II activity in each of these mutant cell lines. In comparison with the RNA polymerase II of wild-type cells, three mutants, Ama39, Ama6, and Amal, required respectively 2- to 3-fold, 8- to 10-fold, and about 800-fold higher concentrations of alpha-amanitin for inhibition of their polymerase II activity. Determination of the equilibrium dissociation constants (KD) for complexes between 0-[3H]methyl-demethyl-gamma-amanitin and RNA polymearse II indicated that differences in alpha-amanitin sensitivity were reflected in differences in the ability of the enzymes to bind amanitin. Hybrids formed by fusion of mutants with cells of wild-type sensitivity contained both mutant and wild-type polymerase II activities. Thus, each of the different alpha-amanitin resistance mutations was expressed co-dominantly. A test for complementation between two of these mutations by measurement of both the alpha-amanitin sensitivity and the [3H]amanitin binding by RNA polymerase II in Ama6 X Amal hybrid cells did not reveal any wild-type RNA polymerase II activity. These data provide evidence that the mutation to alpha-amanitin resistance involves structural changes in the gene coding for the alpha-amanitin binding subunit of RNA polymerase II. These changes appear to account for the alpha-amanitin-resistant phenotypes of these mutant cells. |