首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Channeling of intermediates in the CDP-choline pathway of phosphatidylcholine biosynthesis in cultured glioma cells is dependent on intracellular Ca2+
Authors:T P George  H W Cook  D M Byers  F B Palmer  M W Spence
Institution:Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
Abstract:The major route of phosphatidylcholine (Ptd-choline) biosynthesis in mammalian cells is the CDP-choline pathway which involves stepwise conversion of choline to phosphocholine (P-choline), cytidine diphosphate choline (CDP-choline), and Ptd-choline. Our previous studies with electropermeabilized (EP) rat glioma (C6) cells have indicated that the intermediates of this pathway are not freely diffusible in the cell but are channeled toward synthesis of Ptd-choline (George, T.P., Morash, S.C., Cook, H.W., Byers, D.M., Palmer, F. B. St.C., and Spence, M.W. (1989) Biochim. Biophys. Acta 1004, 283-291). In this study, Ca(2+)-ethylene-bis(oxyethylenenitrilo)]tetraacetic acid buffers were used to investigate the role of intracellular free Ca2+ levels in functional organization of this pathway in EP glioma cells. In EP cells reduction of free Ca2+ in the medium from 1.8 mM to less than 200 nM resulted in 2-3-fold stimulation of exogenous 3H]choline and 14C]P-choline incorporation into Ptd-choline whereas incorporation of exogenous CDP-14C]choline was augmented 100-fold; there was no uptake or incorporation of labeled P-choline or CDP-choline in intact cells. In EP cells incubated at 1.8 mM Ca2+ the water-soluble products of choline metabolism (choline, P-choline, CDP-choline, and glycerophosphocholine) were retained at 37 degrees C; in contrast, in the presence of 100 nM Ca2+ there was uniform leakage of these metabolites. Experiments with hemicholinium-3, an inhibitor of choline transport, and EP cells at 100 nM Ca2+ show that linkage of choline transport and Ptd-choline biosynthesis is also dependent on Ca2+. These results suggest that channeling of intermediates in the CDP-choline pathway of Ptd-choline biosynthesis in glioma cells is mediated by intracellular Ca2+ levels that may coordinately regulate the steps involved in conversion of choline to Ptd-choline.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号