首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Halotolerant cyanobacterium Aphanothece halophytica contains an Na(+)/H(+) antiporter, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail
Authors:Waditee R  Hibino T  Tanaka Y  Nakamura T  Incharoensakdi A  Takabe T
Institution:Research Institute, Faculty of Science and Technology, Meijo University, Nagoya 468-8502, Japan.
Abstract:Recently, a cyanobacterium Synechocystis sp. PCC 6803 has been shown to contain an Na(+)/H(+) antiporter gene homologous to plants (SOS1 and AtNHX1 from Arabidopsis) and mammalians (NHEs from human) but not to Escherichia coli (nhaA and nhaB). Here, we examined whether a halotolerant cyanobacterium Aphanothece halophytica has homologous genes. It turned out that A. halophytica contains an Na(+)/H(+) antiporter homologous to plants, mammalians, and some bacteria (nhaP from Pseudomonas and synnhaP from Synechocystis) but with novel ion specificity. Its gene product, ApNhaP (Na(+)/H(+) antiporter from Aphanothece halophytica), exhibited the Na(+)/H(+) antiporter activity over a wide pH range between 5 and 9 and complemented the Na(+)-sensitive phenotype of the antiporter-deficient E. coli mutant. The ApNhaP had virtually no activity for the Li(+)/H(+) antiporter but showed high Ca(2+)/H(+) antiporter activity at alkaline pH. The ApNhaP complemented the Ca(2+)-sensitive phenotype of the E. coli mutant but not the Li(+)-sensitive phenotype. The replacement of a long C-terminal tail of ApNhaP with that of Synechocystis altered the ion specificity of the antiporter. These results suggest that the ion specificity of an Na(+)/H(+) antiporter is partly determined by the structural properties of the C-terminal tail, which was well exemplified in the case of A. halophytica.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号