首页 | 本学科首页   官方微博 | 高级检索  
     


Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data
Authors:Xue, Liugen   Zhu, Lixing
Affiliation:College of Applied Sciences, Beijing University of Technology, Beijing 100022, China lgxue{at}bjut.edu.cn
Abstract:
A semiparametric regression model for longitudinal data is considered.The empirical likelihood method is used to estimate the regressioncoefficients and the baseline function, and to construct confidenceregions and intervals. It is proved that the maximum empiricallikelihood estimator of the regression coefficients achievesasymptotic efficiency and the estimator of the baseline functionattains asymptotic normality when a bias correction is made.Two calibrated empirical likelihood approaches to inferencefor the baseline function are developed. We propose a groupwiseempirical likelihood procedure to handle the inter-series dependencefor the longitudinal semiparametric regression model, and employbias correction to construct the empirical likelihood ratiofunctions for the parameters of interest. This leads us to provea nonparametric version of Wilks' theorem. Compared with methodsbased on normal approximations, the empirical likelihood doesnot require consistent estimators for the asymptotic varianceand bias. A simulation compares the empirical likelihood andnormal-based methods in terms of coverage accuracies and averageareas/lengths of confidence regions/intervals.
Keywords:Confidence region   Empirical likelihood    Longitudinal data    Maximum empirical likelihood estimator    Semiparametric regression model
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号