首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Further evidence that there is more than one adrenal 21-hydroxylase system
Authors:S O Franklin  S Lieberman  N J Greenfield
Institution:College of Physicians and Surgeons, Columbia University, Department of Obstetrics and Gynecology, New York, NY 10032.
Abstract:The 21-hydroxylase activity of microsomes isolated from bovine adrenal cortex have been assayed using 21-3H]17-hydroxypregnenolone and 1,2-3H]17-hydroxyprogesterone as substrates. When the assays are performed in the presence of an NADH regenerating system, to inhibit steroid 3 beta-hydroxy isomerase-dehydrogenase activity, the microsomes oxidize the 3 beta-hydroxy-5-ene steroid at a rate of 0.37 nmol/min.nmol cytochrome P-450 and the 3-keto-4-ene steroid at a rate of 6.4 nmol/min.nmol. When the microsomes are solubilized with Triton CF-54 they lose the ability to oxidize the 3-hydroxy-5-ene steroid, while the specific activity of the microsomes for the 3-keto-4-ene steroid is enhanced 3-fold. In contrast, when the microsomes are solubilized with sodium cholate, their specific activity towards the 4-ene steroid is decreased by 50% while the specific activity for a low concentration of the 5-ene steroid, 1 microM, is unchanged. In addition, when the oxidations of the labeled steroids (at 1 microM) by the microsomes, are examined in the presence of unlabeled 17-hydroxyprogesterone (at 20 microM) the oxidation of the 3-keto-4-ene steroid is inhibited by 92% while the oxidation of the 3 beta-hydroxy-5-ene steroid is only inhibited by 20%. These results all suggest that there are at least two 21-hydroxylases in bovine adrenal tissue, one of which can utilize the 3-keto-4-ene steroids only, the other of which, in addition, can utilize the 3 beta-hydroxy-5-ene steroids as substrates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号