首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rotenone-like action of the branched-chain phytanic acid induces oxidative stress in mitochondria
Authors:Schönfeld Peter  Reiser Georg
Institution:Institut für Biochemie, Institut für Neurobiochemie, Otto-von-Guericke-Universit?t Magdeburg, Medizinische Fakult?t, Leipziger Strasse 44, D-39120 Magdeburg, Germany. peter.schoenfeld@medizin.uni-magdeburg.de
Abstract:Phytanic acid (Phyt) increase is associated with the hereditary neurodegenerative Refsum disease. To elucidate the still unclear toxicity of Phyt, mitochondria from brain and heart of adult rats were exposed to free Phyt. Phyt at low micromolar concentrations (maximally: 100 nmol/mg of protein) enhances superoxide (O(2)(.))(2) generation. Phyt induces O(2)(.) in state 3 (phosphorylating), as well as in state 4 (resting). Phyt stimulates O(2)(.) generation when the respiratory chain is fed with electrons derived from oxidation of glutamate/malate, pyruvate/malate, or succinate in the presence of rotenone. With succinate alone, Phyt suppresses O(2)(.) generation caused by reverse electron transport from succinate to complex I. The enhanced O(2)(.) generation by Phyt in state 4 is in contrast to the mild uncoupling concept. In this concept uncoupling by nonesterified fatty acids should abolish O(2)(.) generation. Stimulation of O(2)(.) generation by Phyt is paralleled by inhibition of the electron transport within the respiratory chain or electron leakage from the respiratory chain. The interference of Phyt with the electron transport was demonstrated by inhibition of state 3- and p-trifluoromethoxyphenylhydrazone (FCCP)-dependent respiration, inactivation of the NADH-ubiquinone oxidoreductase complex in permeabilized mitochondria, decrease in reduction of the synthetic electron acceptor 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in state 4, and increase of the mitochondrial NAD(P)H level in FCCP-uncoupled mitochondria. Thus, we suggest that complex I is the main site of Phyt-stimulated O(2)(.) generation. Furthermore, inactivation of aconitase and oxidation of the mitochondrial glutathione pool show that enhanced O(2)(.) generation with chronic exposure to Phyt causes oxidative damage.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号